Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Electronics (Basel) ; 11(5)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36199762

RESUMO

Precise monitoring of respiratory rate in premature newborn infants is essential to initiating medical interventions as required. Wired technologies can be invasive and obtrusive to the patients. We propose a deep-learning-enabled wearable monitoring system for premature newborn infants, where respiratory cessation is predicted using signals that are collected wirelessly from a non-invasive wearable Bellypatch put on the infant's body. We propose a five-stage design pipeline involving data collection and labeling, feature scaling, deep learning model selection with hyperparameter tuning, model training and validation, and model testing and deployment. The model used is a 1-D convolutional neural network (1DCNN) architecture with one convolution layer, one pooling layer, and three fully-connected layers, achieving 97.15% classification accuracy. To address the energy limitations of wearable processing, several quantization techniques are explored, and their performance and energy consumption are analyzed for the respiratory classification task. Results demonstrate a reduction of energy footprints and model storage overhead with a considerable degradation of the classification accuracy, meaning that quantization and other model compression techniques are not the best solution for respiratory classification problem on wearable devices. To improve accuracy while reducing the energy consumption, we propose a novel spiking neural network (SNN)-based respiratory classification solution, which can be implemented on event-driven neuromorphic hardware platforms. To this end, we propose an approach to convert the analog operations of our baseline trained 1DCNN to their spiking equivalent. We perform a design-space exploration using the parameters of the converted SNN to generate inference solutions having different accuracy and energy footprints. We select a solution that achieves an accuracy of 93.33% with 18× lower energy compared to the baseline 1DCNN model. Additionally, the proposed SNN solution achieves similar accuracy as the quantized model with a 4× lower energy.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37206370

RESUMO

A 2.4 GHz on-body Bluetooth antenna (BLEpatch) is proposed for respiration monitoring and contact tracing applications. Due to its patch structure, the antenna performance is robust at body proximity. The introduction of a compressible foam substrate allows it to periodically compress and relax in response to abdominal pressure due to respiration. The antenna is simulated both in free space and on a human body model. The antenna passband is 2.36 - 2.57 GHz with a maximum gain of 8.2 dBi in the relaxed state.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37220566

RESUMO

Passive ultra high frequency (UHF) radio frequency identification (RFID) tags have the potential to find ubiquitous use in indoor object tracking, localization, and contact tracing. We propose a machine learning-based method for RFID indoor localization using a pattern reconfigurable UHF RFID reader antenna array. The received signal strength indicator (RSSI) values (from 10,000 tags) recorded at the reader antenna units are used as features to evaluate the machine learning models with a train-test split of 75%-25%. The training and testing data is generated by a wireless ray tracing simulator. Five machine learning models: random forest regressor, decision tree regressor, Nu support vector regressor, k nearest regressor, and kernel ridge regressor are compared. Random forest regressor has the lowest localization error both in terms of average Euclidean distance (AED) and root-mean-square error (RMSE). For random forest regressor, localization error results show that 90% of the tags are within 1 meter of their true position, and 67% are within 50 cm of their true position based on Euclidean distance.

4.
IEEE Internet Things J ; 8(17): 13763-13773, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34722794

RESUMO

One of the major challenges faced by passive on-body wireless Internet of Things (IoT) sensors is the absorption of radiated power by tissues in the human body. We present a battery-less, wearable knitted Ultra High Frequency (UHF, 902-928 MHz) Radio Frequency Identification (RFID) compression sensor (Bellypatch) antenna and show its applicability as an on-body respiratory monitor. The antenna radiation efficiency is satisfactory in both free-space and on-body operations. We extract RF (Radio Frequency) sheet resistance values of three knitted silver-coated nylon fabric candidates at 913 MHz. The best type of fabric is selected based on the extracted RF sheet resistance. Simulated and measured performance of the antenna confirm suitability for on-body applications. The proposed Bellypatch antenna is used to measure the breathing activity of a programmable infant patient emulator mannequin (SimBaby) and a human subject. The antenna is highly sensitive to respiratory compression and relaxation. Fluctuations in the backscatter power level/Received Signal Strength Indicator (RSSI) in both cases range from 6 dB to 15 dB. The improved on-body read range of the proposed sensor antenna is 5.8 m, about 10 times higher than its predecessor wearable knitted strain sensing Bellyband antenna (0.6 m). The maximum simulated Specific Absorption Rate (SAR) on a human torso model is 0.25 W/kg, lower than the maximum allowable limit of 1.6 W/kg.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34386807

RESUMO

Wearable sensors with RFID (Radio Frequency Identification) tags are considered to be an integral part of the upcoming revolution in the IoT (Internet of Things) sector. As with many deployed IoT sensor systems, dynamic environment conditions present challenges in reliably measuring system performance; this difficulty is enhanced due to proprietary details about the sensors, such as an RFID chip embedded within a novel knitted antenna acting as a passive sensor. A repeatable and scalable platform is necessary to evaluate the performance of the entire system in the pre-deployment stage in order to compare the predicted effects of varying components, design, and integration of sensors in an integrated IoT device. This paper demonstrates the development of an RFID channel emulation testbed in the United States ISM band (902-928 MHz). The testbed includes a commercial RFID interrogator, a custom-built circuit board housing a commercial passive RFID chip, and a dynamic spectrum environment emulator (DYSE) for wireless channel emulation. A single link scenario was considered where the DYSE emulates the antenna gain fluctuation due to the sensing of breathing with a fabric-based RFID. Two regular and one irregular breathing scenarios were emulated, and breathing rate or anomaly was detected from post-processed RSSI (Received Signal Strength Indicator) data received by the RFID interrogator.

6.
IEEE Access ; 9: 68523-68534, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012740

RESUMO

We propose an Ultra High Frequency (UHF) Radio Frequency Identification (RFID, 902-928 MHz in the US) channel emulation testbed that is capable of simultaneously emulating unique wireless channels. The proposed system can potentially be an invaluable tool in the design and validation of RFID-based Internet of Things (IoT) sensors and systems. Emulation of ray-tracing-based wireless channels enables the evaluation of inherently difficult and complex RF scenarios, particularly in situations when in-person experimentation is not feasible or desirable (e.g., during a pandemic or in a critical care facility). Furthermore, the emulation testbed is able to generate a large amount of sensor data in a limited time period. Machine learning techniques used in wireless IoT can be greatly enhanced by a large amount of data extracted from the emulation of dynamic and challenging environments. The proposed multi-channel emulation testbed is therefore a valuable solution for experimentation on real hardware and a convenient tool for pre-clinical-trial system validation.

7.
Adv Mater ; 33(1): e2003225, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33251683

RESUMO

Highly integrated, flexible, and ultrathin wireless communication components are in significant demand due to the explosive growth of portable and wearable electronic devices in the fifth-generation (5G) network era, but only conventional metals meet the requirements for emerging radio-frequency (RF) devices so far. Here, it is reported on Ti3 C2 Tx MXene microstrip transmission lines with low-energy attenuation and patch antennas with high-power radiation at frequencies from 5.6 to 16.4 GHz. The radiation efficiency of a 5.5 µm thick MXene patch antenna manufactured by spray-coating from aqueous solution reaches 99% at 16.4 GHz, which is about the same as that of a standard 35 µm thick copper patch antenna at about 15% of its thickness and 7% of the copper weight. MXene outperforms all other materials evaluated for patch antennas to date. Moreover, it is demonstrated that an MXene patch antenna array with integrated feeding circuits on a conformal surface has comparable performance with that of a copper antenna array at 28 GHz, which is a target frequency in practical 5G applications. The versatility of MXene antennas in wide frequency ranges coupled with the flexibility, scalability, and ease of solution processing makes MXene promising for integrated RF components in various flexible electronic devices.

8.
Artigo em Inglês | MEDLINE | ID: mdl-34012721

RESUMO

Future advances in the medical Internet of Things (IoT) will require sensors that are unobtrusive and passively powered. With the use of wireless, wearable, and passive knitted smart garment sensors, we monitor infant respiratory activity. We improve the utility of multi-tag Radio Frequency Identification (RFID) measurements via fusion learning across various features from multiple tags to determine the magnitude and temporal information of the artifacts. In this paper, we develop an algorithm that classifies and separates respiratory activity via a Regime Hidden Markov Model compounded with higher-order features of Minkowski and Mahalanobis distances. Our algorithm improves respiratory rate detection by increasing the Signal to Noise Ratio (SNR) on average from 17.12 dB to 34.74 dB. The effectiveness of our algorithm in increasing SNR shows that higher-order features can improve signal strength detection in RFID systems. Our algorithm can be extended to include more feature sources and can be used in a variety of machine learning algorithms for respiratory data classification, and other applications. Further work on the algorithm will include accurate parameterization of the algorithm's window size.

9.
IET Microw Antennas Propag ; 14(3): 154-158, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35529428

RESUMO

Flexible antennas have the potential to transform wearable and fabric-based wireless sensing technologies. The antenna discussed in this study is part of a sensing system that uses the back-scattered power level as the decision metric. For a good wireless sensor, it is necessary to offer a feasible read range and maintain good distinctions in the back-scattered power levels between the different states (i.e. level of stretch) of the antenna. Moreover, effects due to human body proximity should be minimised. For these reasons, the radiation efficiency is a crucial parameter to investigate. This study presents the radiation efficiency measurement of the proposed flexible knitted 'Bellyband' antenna at two different levels of stretch in a reverberation chamber. This work validates the reverberation chamber measurements through comparison with simulations and anechoic chamber measurements at 900 MHz. Moreover, this work demonstrates how the approach can be used to quantify bellyband antenna efficiency in the vicinity of a human body. Finally, the efficiency results were used to predict the read range of Bellyband radio frequency identification technology.

10.
IEEE Access ; 8: 187365-187372, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33542891

RESUMO

The growing research interest in passive RFID (Radio Frequency Identification)-based devices and sensors in a diverse group of applications calls for flexibility in reader antenna performance. We propose a low-cost, easy-to-fabricate, and pattern reconfigurable UHF (Ultra High Frequency) RFID reader antenna in the RFID ISM band (902-928 MHz in the US). The antenna offers a 54 MHz bandwidth (890 - 944 MHz) and 8.9 dBi maximum gain. The proposed reconfigurable antenna can radiate four electronically switchable radiation beams in the azimuth plane. The antenna is LHCP (Left Hand Circularly Polarized) with axial ratio (AR) in the ranging from 0.45 dB to 7 dB in the RFID ISM band. Simulation and measurements are presented, and they are in good agreement. The proposed reader array performance is compared against a commercially available reader antenna. The pattern reconfigurable UHF RFID reader antenna not only increases the coverage area for conventional RFID applications but also opens the door to on-body RFID sensor implementation and indoor localization applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...