Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 49(5)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36177778

RESUMO

Mathematical modeling is a powerful and inexpensive approach to provide a quantitative basis for improvements that minimize the negative effects of bioreactor heterogeneity. For a model to accurately represent a heterogeneous system, a flow model that describes how mass is channeled between different zones of the bioreactor volume is necessary. In this study, a previously developed compartment model approach based on data from flow-following sensor devices was further developed to account for dynamic changes in volume and flow rates and thus enabling simulation of the widely used fed-batch process. The application of the dynamic compartment model was demonstrated in a study of an industrial fermentation process in a 600 m3 bubble column bioreactor. The flow model was used to evaluate the mixing performance by means of tracer simulations and was coupled with reaction kinetics to simulate concentration gradients in the process. The simulations showed that despite the presence of long mixing times and significant substrate gradients early in the process, improving the heterogeneity did not lead to overall improvements in the process. Improvements could, however, be achieved by modifying the dextrose feeding profile.


Assuntos
Técnicas de Cultura Celular por Lotes , Escherichia coli , Reatores Biológicos , Fermentação , Glucose
2.
Comput Struct Biotechnol J ; 18: 2908-2919, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33163151

RESUMO

Production-scale fermentation processes in industrial biotechnology experience gradients in process variables, such as dissolved gases, pH and substrate concentrations, which can potentially affect the production organism and therefore the yield and profitability of the processes. However, the extent of the heterogeneity is unclear, as it is currently a challenge at large scale to obtain representative measurements from different zones of the reactor volume. Computational fluid dynamics (CFD) models have proven to be a valuable tool for better understanding the environment inside bioreactors. Without detailed measurements to support the CFD predictions, the validity of CFD models is debatable. A promising technology to obtain such measurements from different zones in the bioreactors are flow-following sensor devices, whose development has recently benefitted from advancements in microelectronics and sensor technology. This paper presents the state of the art within flow-following sensor device technology and addresses how the technology can be used in large-scale bioreactors to improve the understanding of the process itself and to test the validity of detailed computational models of the bioreactors in the future.

3.
Trends Biotechnol ; 37(7): 697-706, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30737008

RESUMO

Miniaturized stirred bioreactors (MSBRs) are gaining popularity as a cost-effective approach to scale-down experimentation. However, realizing conditions that reflect the large-scale process accurately can be challenging. This article highlights common challenges of using MSBRs for scale-down. The fundamental difference between oxygen mass transfer coefficient (kLa) and oxygen transfer rate scaling is addressed and the difficulty of achieving turbulent flow and industrially relevant tip speeds is described. More practical challenges of using MSBR systems for scale-down are also discussed, including the risk of vortex formation, changed volume dynamics, and wall growth. By highlighting these challenges, the article aims to create more awareness of these difficulties and to contribute to improved design of scale-down experiments.


Assuntos
Reatores Biológicos/microbiologia , Biotecnologia/métodos , Microbiologia Industrial/métodos , Modelos Biológicos , Oxigênio/metabolismo
4.
Bioengineering (Basel) ; 5(2)2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29695105

RESUMO

Due to the sensitivity of mammalian cell cultures, understanding the influence of operating conditions during a tissue generation procedure is crucial. In this regard, a detailed study of scaffold based cell culture under a perfusion flow is presented with the aid of mathematical modelling and computational fluid dynamics (CFD). With respect to the complexity of the case study, this work focuses solely on the effect of nutrient and metabolite concentrations, and the possible influence of fluid-induced shear stress on a targeted cell (cartilage) culture. The simulation set up gives the possibility of predicting the cell culture behavior under various operating conditions and scaffold designs. Thereby, the exploitation of the predictive simulation into a newly developed stochastic routine provides the opportunity of exploring improved scaffold geometry designs. This approach was applied on a common type of fibrous structure in order to increase the process efficiencies compared with the regular used formats. The suggested topology supplies a larger effective surface for cell attachment compared to the reference design while the level of shear stress is kept at the positive range of effect. Moreover, significant improvement of mass transfer is predicted for the suggested topology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...