Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(4): 231074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38660600

RESUMO

Living cells are out of equilibrium active materials. Cell-generated forces are transmitted across the cytoskeleton network and to the extracellular environment. These active force interactions shape cellular mechanical behaviour, trigger mechano-sensing, regulate cell adaptation to the microenvironment and can affect disease outcomes. In recent years, the mechanobiology community has witnessed the emergence of many experimental and theoretical approaches to study cells as mechanically active materials. In this review, we highlight recent advancements in incorporating active characteristics of cellular behaviour at different length scales into classic viscoelastic models by either adding an active tension-generating element or adjusting the resting length of an elastic element in the model. Summarizing the two groups of approaches, we will review the formulation and application of these models to understand cellular adaptation mechanisms in response to various types of mechanical stimuli, such as the effect of extracellular matrix properties and external loadings or deformations.

2.
Adv Funct Mater ; 33(3)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36817407

RESUMO

Two-photon polymerization (TPP) has been widely used to create 3D micro- and nanoscale scaffolds for biological and mechanobiological studies, which often require the mechanical characterization of the TPP fabricated structures. To satisfy physiological requirements, most of the mechanical characterizations need to be conducted in liquid. However, previous characterizations of TPP fabricated structures were all conducted in air due to the limitation of conventional micro- and nanoscale mechanical testing methods. In this study, we report a new experimental method for testing the mechanical properties of TPP-printed microfibers in liquid. The experiments show that the mechanical behaviors of the microfibers tested in liquid are significantly different from those tested in air. By controlling the TPP writing parameters, the mechanical properties of the microfibers can be tailored over a wide range to meet a variety of mechanobiology applications. In addition, it is found that, in water, the plasticly deformed microfibers can return to their pre-deformed shape after tensile strain is released. The shape recovery time is dependent on the size of microfibers. The experimental method represents a significant advancement in mechanical testing of TPP fabricated structures and may help release the full potential of TPP fabricated 3D tissue scaffold for mechanobiological studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...