Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 207(2): 397-404, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23227957

RESUMO

AIM: Lamotrigine is a neuroprotective agent that is used clinically for the treatment of seizures and neuropathic pain. A significant volume of literature has reported that lamotrigine exerts analgesic effect by blocking Ca(2+) channels. However, little is known regarding the effect of lamotrigine on the intracellular Ca(2+) concentration ([Ca(2+)](i)). The aim of this study was to determine whether lamotrigine modulates [Ca(2+)](i) in sensory neurones. METHODS: Lamotrigine-induced changes in [Ca(2+)](i) were measured in mouse dorsal root ganglion (DRG) neurones using the Ca(2+)-sensitive fluorescent indicator Fluo 3-AM and a confocal laser scanning microscope. Ca(2+)/calmodulin-dependent kinase II (CaMKII) activation was assessed by the fluorescence intensity using immunocytochemical procedures. RESULTS: Treatment with 1, 10, 30 or 100 µM lamotrigine transiently increased [Ca(2+)](i) in DRG neurones in a dose-dependent manner. Treatment with 100 µM lamotrigine induced a significant (threefold) increase in the Ca(2+) peak in the presence or absence of extracellular Ca(2+). The lamotrigine-induced Ca(2+) increase was abolished or decreased by the treatment with a specific PLC inhibitor (U73122), IP3R antagonist (xestospongin C) or RyR antagonist (dantrolene). In some cells, treatment with 100 µM lamotrigine caused a transient Ca(2+) increase, and the Ca(2+) levels quickly fell to below the basal Ca(2+) level observed prior to lamotrigine application. The decrease in basal Ca(2+) levels was blocked by the treatment with a CaMKII inhibitor (KN93). Immunocytochemical analysis indicated that lamotrigine treatment increased the expression of phosphorylated CaMKII in DRG neurones. CONCLUSION: Treatment with lamotrigine increased [Ca(2+)](i) apparently as a result of Ca(2+) release from intracellular stores and CaMKII activity.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Neurônios/efeitos dos fármacos , Triazinas/farmacologia , Animais , Ativação Enzimática/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/enzimologia , Imuno-Histoquímica , Lamotrigina , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microscopia Confocal , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...