Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Med Mushrooms ; 25(12): 15-31, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37947061

RESUMO

Mycochemical properties and bioactivities of Ganoderma resinaceum and Serpula similis remain unexplored. The present study assessed antioxidant, cytotoxicity, and cell migration abilities of Ganoderma and Serpula extracts, followed by their phytochemical analyses. The MTT assay was conducted to determine the cytotoxicity along with the cell migration studies in human cancer cell lines. The antioxidant profiles were evaluated through DPPH and FRAP assays. Furthermore, LC-MS/MS analysis was performed to elucidate the phytochemicals responsible for anticancer and antioxidant activities. Significant concentration-dependent cytotoxicities of 12.7% and 13.7% were observed against HCT 116 cell lines at 1% and 5% concentrations of the G. resinaceum extract, respectively. Similarly, significant concentration-dependent cytotoxicities of 6.7% and 25.5% were observed at 1% and 5% concentrations of the S. similis extract, respectively. The extracts of G. resinaceum and S. similis both shows better anti-migration potential in lung cancer cells. Both extracts demonstrated good scavenging activity on DPPH and ferric ion free radicals. LC-MS analysis revealed 11 compounds from S. similis and 15 compounds from G. resinaceum fruiting bodies. Compounds such as terpenoids, alkaloids, cytotoxic peptides, and other metabolites were identified as major components in both extracts. These extracts exhibited cytotoxic activity against HCT 116 cancer cells, along with moderate antioxidant activity. This implies that the extracts might be used as bioactive natural sources in the pharmaceutical and food industries.


Assuntos
Antineoplásicos , Ganoderma , Humanos , Antioxidantes/química , Cromatografia Líquida , Terpenos/farmacologia , Terpenos/metabolismo , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Ganoderma/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo
2.
Pestic Biochem Physiol ; 125: 17-25, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26615146

RESUMO

This paper evaluates α-amylase inhibitor (α-AI) mediated defense of pigeonpea against Helicoverpa armigera. A bifunctional α-amylase/trypsin inhibitor was purified from the seeds of pigeonpea by native liquid phase isoelectric focusing (N-LP-IEF), affinity chromatography and preparative electrophoresis. Its in-vivo and in-vitro interaction with midgut amylases of H. armigera was studied along with growth inhibitory activity. One and two dimensional (2D) zymographic analyses revealed that the purified inhibitor is dimeric glycoprotein (60.2kDa and 56kDa) exist in a multi-isomeric form with five pI variants (pI 5.5 to 6.3). It was found to be heat labile with complete inactivation up to 80°C and stable over a wide range of pH (4-11). The slow binding and competitive type of α-amylase inhibition was observed with 0.08µM of dissociation constant (Ki) for the enzyme-inhibitor complex (EI). The internal protein sequence of two subunits obtained by mass spectrometry matched with cereal-type α-AI, a conserved domain from AAI_LTSS superfamily and sialyltransferase-like protein respectively. In-vivo studies indicated up-regulation of total midgut α-amylase activity with negative effect on growth rate of H. armigera suggesting its suitability for pest control.


Assuntos
Cajanus/química , Mariposas/efeitos dos fármacos , Proteínas de Plantas/química , Sementes/química , Inibidores da Tripsina/química , Sequência de Aminoácidos , Animais , Cajanus/genética , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Cinética , Dados de Sequência Molecular , Mariposas/química , Mariposas/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Alinhamento de Sequência , Tripsina/química , Tripsina/genética , Tripsina/metabolismo , Inibidores da Tripsina/isolamento & purificação , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química , alfa-Amilases/genética , alfa-Amilases/metabolismo
3.
Colloids Surf B Biointerfaces ; 133: 208-13, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26111897

RESUMO

We report a rapid one-step immunoassay to detect protein using antibody conjugated gold nanoparticles (AbGNPs) where the targeted protein concentration was determined by analyzing the gold nanoparticle aggregation caused by antibody-antigen interactions using nanoparticles tracking analysis (NTA) technique. The sandwich structure constituting the binding of the targeted human IgG to the gold nanoparticle conjugates with goat anti human monoclonal IgG (AbGNPs) was confirmed by transmission electron microscopy. The binding of human IgG (antigen, mentioned hence forth as AT) induce AbGNPs to form dimers or trimers through a typical antibody-antigen-antibody sandwich structure that can be analyzed for the sensitive determination on the basis of change in hydrodynamic diameter of AbGNPs. By this method the minimum detectable concentration of AT is found to be below 2pg/ml. We expect that a significant change in the hydrodynamic diameter of AbGNP could form the basis for the rapid one-step immunoassay development.


Assuntos
Proteínas Sanguíneas/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Humanos , Microscopia Eletrônica de Transmissão
4.
Plant Physiol Biochem ; 52: 77-82, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22305069

RESUMO

More than 200 insect pests are found growing on pigeonpea. Insects lay eggs, attack and feed on leaves, flowers and developing pods. Plants have developed elaborate defenses against these insect pests. The present work evaluates protease inhibitor (PI) based defense of pigeonpea in leaves and flowers. PIs in the extracts of these tender tissues were detected by using gel X-ray film contact print method. Up to three PIs (PI-3, PI-4 and PI-5) were detected in these tissues as against nine (PI-1-PI-9) in mature seeds. PI-3 is the major component of these tissues. Mechanical wounding, insect chewing, fungal pathogenesis and application of salicylic acid induced PIs in pigeonpea in these tissues. Induction was found to be local as well as systemic but local response was stronger than systemic response. During both local and systemic induction, PI-3 appeared first. In spite of the presence and induction of PIs in these tender tissues and seeds farmers continue to suffer yield loses. This is due to the weak expression of PIs. However the ability of the plant to respond to external stimuli by producing defense proteins does not seem to be compromised. This study therefore indicates that PIs are components of both constitutive and inducible defense and provide a ground for designing stronger inducible defense (PIs or other insect toxin based) in pigeonpea.


Assuntos
Cajanus/química , Lepidópteros/enzimologia , Doenças das Plantas/imunologia , Extratos Vegetais/farmacologia , Imunidade Vegetal , Inibidores de Proteases/farmacologia , Animais , Cajanus/imunologia , Cajanus/microbiologia , Cajanus/parasitologia , Sistema Digestório/enzimologia , Eletroforese em Gel de Poliacrilamida , Flores/química , Fungos/fisiologia , Lepidópteros/fisiologia , Mutação , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Inibidores de Proteases/química , Inibidores de Proteases/isolamento & purificação , Ácido Salicílico/farmacologia , Sementes/química , Ferimentos e Lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...