Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850446

RESUMO

With the increase in low-power wireless communication solutions, the deployment of Wireless Sensor Networks is becoming usual, especially to implement Cyber-Physical Systems. These latter can be used for Structural Health Monitoring applications in critical environments. To ensure a long-term deployment, battery-free and energy-autonomous wireless sensors are designed and can be powered by ambient energy harvesting or Wireless Power Transfer. Because of the criticality of the applications and the limited resources of the nodes, the security is generally relegated to the background, which leads to vulnerabilities in the entire system. In this paper, a security analysis based on an example: the implementation of a communicating reinforced concrete using a network of battery-free nodes; is presented. First, the employed wireless communication protocols are presented in regard of their native security features, main vulnerabilities, and most usual attacks. Then, the security analysis is carried out for the targeted implementation, especially by defining the main hypothesis of the attack and its consequences. Finally, solutions to secure the data and the network are compared. From a global point-of-view, this security analysis must be initiated from the project definition and must be continued throughout the deployment to allow the use of adapted, updatable and upgradable solutions.

2.
Sensors (Basel) ; 23(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36850950

RESUMO

The security of internet of things (IoT) devices remains a major concern. These devices are very vulnerable because of some of their particularities (limited in both their memory and computing power, and available energy) that make it impossible to implement traditional security mechanisms. Consequently, researchers are looking for new security mechanisms adapted to these devices and the networks of which they are part. One of the most promising new approaches is fingerprinting, which aims to identify a given device by associating it with a unique signature built from its unique intrinsic characteristics, i.e., inherent imperfections, introduced by the manufacturing processes of its hardware. However, according to state-of-the-art studies, the main challenge that fingerprinting faces is the nonrelevance of the fingerprinting features extracted from hardware imperfections. Since these hardware imperfections can reflect on the RF signal for a wireless communicating device, in this study, we aim to investigate whether or not the power spectral density (PSD) of a device's RF signal could be a relevant feature for its fingerprinting, knowing that a relevant fingerprinting feature should remain stable regardless of the environmental conditions, over time and under influence of any other parameters. Through experiments, we were able to identify limits and possibilities of power spectral density (PSD) as a fingerprinting feature.

3.
Sensors (Basel) ; 22(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684684

RESUMO

This paper presents a multifunctional battery-free wireless sensing node (SN) designed to monitor physical parameters (e.g., temperature, humidity and resistivity) of reinforced concrete. The SN, which is intended to be embedded into a concrete cavity, is autonomous and can be wirelessly powered thanks to the wireless power transmission technique. Once enough energy is stored in a capacitor, the active components (sensor and transceiver) are supplied with the harvested power. The data from the sensor are then wirelessly transmitted via the Bluetooth Low Energy (BLE) technology in broadcasting mode to a device configured as an observer. The feature of energy harvesting (EH) is achieved thanks to an RF-to-DC converter (a rectifier) optimized for a low power input level. It is based on a voltage doubler topology with SMS7630-005LF Schottky diode optimized at -15 dBm input power and a load of 10 kΩ. The harvested DC power is then managed and boosted by a power management unit (PMU). The proposed system has the advantage of presenting two different power management units (PMUs) and two rectifiers working in different European Industrial, Scientific and Medical (ISM) frequency bands (868 MHz and 2.45 GHz) depending on the available power density. The PMU interfaces a storage capacitor to store the harvested power and then power the active components of the sensing node. The low power digital sensor HD2080 is selected to provide accurate humidity and temperature measurements. Resistivity measurement (not reported in this paper) can also be achieved through a current injection on the concrete probes. For wireless communications, the QN9080 system-on-chip (SoC) was chosen as a BLE transceiver thanks to its attractive features: a small package size and extremely low power consumption. For low power consumption, the SN is configured in broadcasting mode. The measured power consumption of the SN in a deep-sleep mode is 946 µJ for four advertising events (spaced at 250 ms maximum) after the functioning of sensors. It also includes voltage offset cancelling functionality for resistivity measurement. Far-field measurement operated in an anechoic chamber with the most efficient PMU (AEM30940) gives a first charging time of 48 s (with an empty capacitor) and recharge duration of 27 s for a complete measurement and data transmission cycle.

4.
Sensors (Basel) ; 21(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884078

RESUMO

This paper proposes a method for optimizing and designing a wireless power transfer system operating at 13.56 MHz. It can be used as guidelines for designing coils for the new-trending technology that enables NFC devices to not only to communicate but also to charge. Since NFC wireless charging is an emerging technology, it is of interest to propose optimizations and a dedicated circuit design for such systems. This work proposes an optimization procedure to calculate the dimensions of a transmitter and receiver pair that assures the highest efficiency while considering all possible positions of a receiver that is placed on a desired surface. This procedure seeks to facilitate and automate the design of rectangular-shaped coils, whereas the literature proposes mainly square-shaped coils. Afterwards, a circuit analysis was conducted, and the series-parallel compensation network is proposed as the most promising topology of the receiver to assure a low efficiency sensibility to load variations for 13.56 MHz wireless power transfer systems. A pair of optimized transmitter and receiver coils is prototyped, and the experimental results are tested against the theory. The transmitter of 7 cm×11.4 cm and receiver of 4 cm ×4 cm are separated by 10 mm. The receiver can move on a surface of 8 cm ×12 cm and the load can vary from 36 Ω to 300 Ω while assuring a minimum and maximum efficiency of 80% and 88.3%, respectively.


Assuntos
Fontes de Energia Elétrica , Tecnologia sem Fio , Desenho de Equipamento
5.
Sensors (Basel) ; 21(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064497

RESUMO

This work presents methods for miniaturizing and characterizing a modified dipole antenna dedicated to the implementation of wireless power transmission systems. The antenna size should respect the planar dimensions of 60 mm × 30 mm to be integrated with small IoT devices such as a Bluetooth Lower Energy Sensing Node. The provided design is based on a folded short-circuited dipole antenna, also named a T-match antenna. Faced with the difficulty of reducing the physical dimensions of the antenna, we propose a 3D configuration by adding vertical metallic arms on the edges of the antenna. The adopted 3D design has an overall size of 56 mm × 32 mm × 10 mm at 868 MHz. Three antenna-feeding techniques were evaluated to characterize this antenna. They consist of soldering a U.FL connector on the input port; vertically connecting a tapered balun to the antenna; and integrating a microstrip transition to the layer of the antenna. The experimental results of the selected feeding techniques show good agreements and the antenna has a maximum gain of +1.54 dBi in the elevation plane (E-plane). In addition, a final modification was operated to the designed antenna to have a more compact structure with a size of 40 mm × 30 mm × 10 mm at 868 MHz. Such modification reduces the radiation surface of the antenna and so the antenna gain and bandwidth. This antenna can achieve a maximum gain of +1.1 dBi in the E-plane. The two antennas proposed in this paper were then associated with a rectifier to perform energy harvesting for powering Bluetooth Low Energy wireless sensors. The measured RF-DC (radiofrequency to direct current) conversion efficiency is 73.88% (first design) and 60.21% (second design) with an illuminating power density of 3.1 µW/cm2 at 868 MHz with a 10 kΩ load resistor.

6.
Sensors (Basel) ; 19(15)2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31362437

RESUMO

This paper addresses the implementation of autonomous radiofrequency identification sensor nodes based on wireless power transfer. For size reduction, a switching method is proposed in order to use the same frequency band for both supplying power to the nodes and wirelessly transmitting the nodes' data. A rectenna harvests the electromagnetic energy delivered by the dedicated radiofrequency source for charging a few-mF supercapacitor. For supercapacitors of 7 mF, it is shown that the proposed autonomous sensor nodes were able to wirelessly communicate with the reader at 868 MHz for 10 min without interruption for a tag-to-reader separation distance of 1 meter. This result was obtained from effective radiated powers of 2 W during the supercapacitor charging and of 100 mW during the wireless data communication.

7.
Sensors (Basel) ; 19(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925754

RESUMO

This paper addresses the practical implementation of a wireless sensors network designed to actualize cyber-physical systems that are dedicated to structural health monitoring applications in the construction domain. This network consists of a mesh grid composed of LoRaWAN battery-free wireless sensing nodes that collect physical data and communicating nodes that interface the sensing nodes with the digital world through the Internet. Two prototypes of sensing nodes were manufactured and are powered wirelessly by using a far-field wireless power transmission technique and only one dedicated RF energy source operating in the ISM 868 MHz frequency band. These sensing nodes can simultaneously perform temperature and relative humidity measurements and can transmit the measured data wirelessly over long-range distances by using the LoRa technology and the LoRaWAN protocol. Experimental results for a simplified network confirm that the periodicity of the measurements and data transmission of the sensing nodes can be controlled by the dedicated RF source (embedded in or just controlled by the associated communicating node), by tuning the radiated power density of the RF waves, and without any modification of the software or the hardware implemented in the sensing nodes.


Assuntos
Monitorização Fisiológica/métodos , Tecnologia sem Fio , Fontes de Energia Elétrica , Planejamento Ambiental , Humanos , Umidade , Monitorização Fisiológica/instrumentação , Supercondutividade , Temperatura , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...