Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38399822

RESUMO

The inactivation of airborne pathogenic microorganisms is crucial to attenuate the dissemination of infectious diseases induced by airborne pathogens. Conventional air disinfection methodologies, such as ultraviolet (UV) irradiation and ozone treatment, have demonstrated limited efficacy. Consequently, we investigated the potential of employing pulsed voltages to effectively eradicate bacteria within aerosols. Our inquiry revealed that the bacterial disinfection rate increased proportionally with elevated applied voltage and frequency. For instance, when a pulsed voltage of 20 kV and a frequency of 500 Hz were applied, a substantial disinfection rate exceeding 6.0 logarithmic units was attained. Furthermore, with the utilization of the stranded wire anodes, the disinfection intensity could be augmented by up to 2.0 logarithmic units compared with the solid wire configuration. Through the utilization of a stranded wire electrode model, we scrutinized the electric field encompassing the electrode, revealing a non-uniform electric field with the stranded wire electrode. This observation indicated an amplified bacterial disinfection effect, aligning with our experimental outcomes. These findings significantly enhance our comprehension of efficacious approaches to electrically disinfecting airborne bacteria.

2.
Comput Struct Biotechnol J ; 21: 4322-4335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711186

RESUMO

African swine fever (ASF) is the most devastating disease caused by the African swine fever virus (ASFV), impacting the pig industry worldwide and threatening food security and biodiversity. Although two vaccines have been approved in Vietnam to combat ASFV, the complexity of the virus, with its numerous open reading frames (ORFs), necessitates a more diverse vaccine strategy. Therefore, we focused on identifying and investigating the potential vaccine targets for developing a broad-spectrum defense against the virus. This study collected the genomic and/or transcriptomic data of different ASFV strains, specifically from in vitro studies, focusing on comparisons between genotypes I, II, and X, from the National Center for Biotechnology Information (NCBI) database. The comprehensive analysis of the genomic and transcriptomic differences between high- and low-virulence strains revealed six early genes, 13 late genes, and six short genes as potentially essential ORFs associated with high-virulence. In addition, many other ORFs (e.g., 14 multigene family members) are worth investigating. The results of this study provided candidate ORFs for developing ASF vaccines and therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...