Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 46(11): 1576-1582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37914360

RESUMO

Chinese artichoke tuber (Stachys sieboldii Miq.) is used as an herbal medicine as well as edible food. This study examined the effect of the Chinese artichoke extracts on the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway that induces the expression of antioxidant enzymes to explore its novel characteristics. Hot water extracts exhibited relatively high ARE activity. ARE activity was observed in two fractions when the hot water extracts were separated in the presence of trifluoroacetic acid using HPLC. Conversely, the highly active fraction disappeared when the hot water extracts were separated in the absence of trifluoroacetic acid. These results indicate that acidic degradation produces active ingredients. The structural analysis of the two active fractions identified harpagide, which is an iridoid glucoside, and harpagogenin. In vitro experiments revealed that harpagide was converted into harpagogenin under acidic conditions and that harpagogenin, but not harpagide, had potent ARE activity. Therefore, this study identified harpagogenin, which is an acid hydrolysate of harpagide, as an ARE activator and suggests that Nrf2-ARE pathway activation by Chinese artichoke contributes to the antioxidative effect.


Assuntos
Stachys , Elementos de Resposta Antioxidante , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Stachys/química , Ácido Trifluoracético , Água
2.
J Pharmacol Sci ; 147(1): 138-142, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34294365

RESUMO

We previously generated an ischemic stroke in a zebrafish model using N2 gas perfusion; however, this model was an unsuitable drug screening system due to low throughput. In this study, we examined a zebrafish ischemic stroke model using an oxygen absorber to assess drug effects. Hypoxic exposure more than 2 h using the oxygen absorber significantly induced cell death in the brain and damage to the neuronal cells. To confirm the utility of the ischemic model induced by the oxygen absorber, we treated zebrafish with neuroprotective agents. MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist, significantly suppressed cell death in the brain, and edaravone, a free radical scavenger, significantly reduced the number of dead cells. These results suggest that the activation of NMDA receptors and the production of reactive oxygen species induce neuronal cell damage in accordance with previous mammalian reports. We demonstrate the suitability of an ischemic stroke model in zebrafish larvae using the oxygen absorber, enabling a high throughput drug screening.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Maleato de Dizocilpina/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Edaravone/uso terapêutico , Sequestradores de Radicais Livres/uso terapêutico , Larva , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Peixe-Zebra , Animais , Encéfalo/patologia , Isquemia Encefálica/etiologia , Isquemia Encefálica/patologia , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Edaravone/farmacologia , Sequestradores de Radicais Livres/farmacologia , Gases , Hipóxia/complicações , Hipóxia/patologia , Neurônios/patologia , Nitrogênio
4.
Yakugaku Zasshi ; 141(6): 851-856, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34078793

RESUMO

Donepezil, the most widely used drug for the treatment of Alzheimer's disease (AD), is an acetylcholinesterase (AChE) inhibitor and is thought to improve cognition by stimulating cholinergic neurotransmission. However, no correlation has yet been established between the inhibitory role of AChE inhibitors and their therapeutic effects when used in AD patients. The cleavage pathway of amyloid precursor protein (APP) includes amyloidgenic (ß, γ-cleavage) and non-amyloidgenic (α-cleavage) pathways. The intracellular transportation of APP is important in determining these cleavage pathways. It has been suggested that sorting nexin (SNX) family proteins regulates the intracellular transport of APP, thereby enhancing α-cleavage. In this study, we examined the effects of donepezil on SNX33 expression changes and APP processing in primary cultures of fetal rat cortical neurons. While donepezil treatment increased the levels of SNX33 expression and soluble APPα (sAPPα) in culture media, no changes were observed regarding full-length APP expression in the cell lysate. Donepezil also reduced the release of amyloid ß (Aß) into culture media in a concentration- and time-dependent manner. This reduction was not affected by acetylcholine receptor antagonists. The membrane surface expression of APP was elevated by donepezil. Furthermore, SNX knockdown by antisense morpholino oligos prevented the effects of donepezil. These results indicated that donepezil increased APP expression at the surface of the plasma membrane by decreasing APP endocytosis through upregulation of SNX33, suggesting donepezil might stimulate the non-amyloidogenic pathway. This new mechanism of action for the currently used anti-AD drug may provide a valuable basis for future drug discovery.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Precursor de Proteína beta-Amiloide/metabolismo , Inibidores da Colinesterase/farmacologia , Donepezila/farmacologia , Endocitose/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Doença de Alzheimer/genética , Animais , Transporte Biológico/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/fisiologia , Inibidores da Colinesterase/uso terapêutico , Donepezila/uso terapêutico , Relação Dose-Resposta a Droga , Descoberta de Drogas , Humanos , Ratos , Nexinas de Classificação/fisiologia , Estimulação Química , Transmissão Sináptica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
5.
PLoS One ; 15(10): e0240378, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052945

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease and is known to be the most common cause of dementia. We previously described the benefits of aromatherapy on the cognitive function of patients with AD utilizing various aromatic essential oils; however, its mechanism of action remains poorly understood. Consequently, in the present study, this mechanism was thoroughly evaluated employing a dementia mice model, specifically the senescence-accelerated mouse prone 8. The mice were exposed to a mixture of lemon and rosemary oil at nighttime as well as to a mixture of lavender and orange oil in the daytime for 2 months. The cognitive function of the mice was assessed before and after treatment with the aromatic essential oils using the Y-maze test. Moreover, the brain levels of amyloid beta (Aß), abnormally phosphorylated tau, and brain-derived neurotrophic factor (BDNF) were measured following treatment. The benefits of aromatherapy on the cognitive function in mice were confirmed. It was also established that the brain levels of Aß and abnormally phosphorylated tau were considerably lower in the aromatherapy group, while the levels of BDNF were marginally higher. These results suggest that aromatherapy employing these aromatic essential oils is beneficial for the prevention and treatment of AD.


Assuntos
Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Aromaterapia/métodos , Disfunção Cognitiva/terapia , Óleos Voláteis/administração & dosagem , Proteínas tau/metabolismo , Doença de Alzheimer/terapia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citrus/química , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Masculino , Aprendizagem em Labirinto , Camundongos , Óleos Voláteis/farmacologia , Fosforilação , Óleos de Plantas/administração & dosagem , Óleos de Plantas/farmacologia , Resultado do Tratamento
6.
Neurosci Lett ; 736: 135268, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32712353

RESUMO

Parkinson disease (PD) is a neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra, and oxidative stress is thought to contribute to this pathogenesis. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway, which induces the production of antioxidant enzymes, is thereby a potential target for therapeutics to reduce neurodegeneration in PD. Previously, we identified TPNA10168 from a chemical library as an activator of the Nrf2-ARE pathway, and the present study examined the effects of TPNA10168 on an in vivo PD model. Subcutaneous administration of TPNA10168 was associated with inhibited dopaminergic neuronal loss and behavioral impairment in 6-hydroxydopamine-induced PD model mice. Heme oxygenase-1 (HO-1) is an antioxidant enzyme expressed downstream of the Nrf2-ARE signaling pathway, and we observed that HO-1 protein levels were upregulated by TPNA10168 in the mouse brain. These results suggest that TPNA10168 inhibits dopaminergic neuronal death in PD model mice, and that upregulation of HO-1 might participate in this effect.


Assuntos
Elementos de Resposta Antioxidante/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/agonistas , Doença de Parkinson Secundária/tratamento farmacológico , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Transdução de Sinais/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Regulação para Cima/efeitos dos fármacos
7.
Biol Pharm Bull ; 43(1): 184-187, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31902924

RESUMO

We have previously isolated 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC) from green perilla leaves as the activator of the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. This study aims to evaluate the effects of DDC against glutamate neurotoxicity using rat primary cortical cultures. Treatment of cultures with DDC for 24 h before glutamate exposure significantly inhibited glutamate neurotoxicity in a concentration-dependent manner. The involvement of hemeoxygenase-1 (HO-1) and reduced glutathione (GSH) in the protective effects of DDC on cortical cultures was also evaluated. While an HO-1 inhibitor did not have a significant effect on DDC-induced neuroprotection, a γ-glutamylcystein synthetase (γ-GCS) inhibitor significantly suppressed the protective effect of DDC. In an astrocyte culture, DDC induced a marked increase in the levels of intracellular reduced GSH. These results suggest that DDC mainly activates the Nrf2-ARE pathway of astrocytes, resulting in the increased extracellular release of reduced GSH, protecting neurons from glutamate neurotoxicity.


Assuntos
Astrócitos/efeitos dos fármacos , Chalconas/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Astrócitos/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Feto , Ácido Glutâmico , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Neurônios/metabolismo , Síndromes Neurotóxicas/metabolismo , Ratos Wistar
8.
Biochem Biophys Res Commun ; 519(4): 777-782, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31551151

RESUMO

Astrocytes have been reported to exhibit neuroprotective action via various chemokines. Reports of the chemokine CCL6 in central nervous system cells show expression in cultured microglia, but many unexplained effects on neurons and astrocytes remain. In this study, cultured cerebral cortical neurons, astrocytes, and a mixed culture system were constructed, and expression levels of CCL6 and its effects on glutamate neurotoxicity were examined. When neuron cultures and neuron-astrocyte mixed cultures were treated with glutamate, neuronal cell death was observed in both, but was induced by lower concentrations of glutamate in monocultured neurons. In addition, pretreatment of neuron cultures with conditioned media from neuron-astrocyte mixed cultures inhibited glutamate neurotoxicity. CCL6 expression was not observed in fluorescence activated cell sorting analyses of neuron and astrocyte cultures, but was observed in astrocytes from cocultures of neurons and astrocytes. Higher CCL6 concentrations were found in media from cocultures of neurons and astrocytes than in culture media from neuron cultures. Pretreatment of neuron cell cultures with CCL6 for 24 h also protected against glutamate neurotoxicity. This protective effect was suppressed by an antagonist of the chemokine receptor CCR1. Furthermore, glutamate neurotoxicity in mixed neuron and astrocyte cultures was enhanced by pretreatments with the CCR1 antagonist. Finally, cotreatments with the phosphatidylinositol-3 kinase (PI3K) inhibitor and CCL6 abolished the neuroprotective effects of CCL6. These data suggest that astrocytes protect neurons by activating CCR1 in neurons. Moreover, this neuroprotective action of astrocyte CCL6 is mediated by CCR1, and downstream by PI3K.


Assuntos
Astrócitos/metabolismo , Quimiocinas CC/genética , Neurônios/metabolismo , Fármacos Neuroprotetores , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Quimiocinas CC/metabolismo , Relação Dose-Resposta a Droga , Ácido Glutâmico/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Wistar
9.
J Pharmacol Sci ; 141(1): 17-24, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31540843

RESUMO

Oxidative stress has been implicated in the pathogenesis of allergic contact dermatitis. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway, an in vivo antioxidant system, induces antioxidant enzymes. In our previous studies, we isolated 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC) from green perilla and identified it as a novel activator of the Nrf2-ARE pathway. We also discovered that it exerted cytoprotective effects against oxidative stress in PC12 cells. However, its effects on skin disease model animals in vivo remain unclear. In the present study, auricular thickness time-dependently increased with the repeated application of picryl chloride, and significant increases were observed from Day 2 in chronic contact hypersensitivity (cCHS) model mice. Histological changes, such as higher numbers of cells in the epidermis, were observed with increases in auricular thickness. The administration of DDC every two days from Day 6 suppressed the increases in auricular thickness and the number of scratching events in a dose-dependent manner. The expression levels of antioxidant enzymes increased in the mouse auricle 24 h after the administration of DDC. These results presume that DDC inhibits increases in auricular thickness in cCHS mice by up-regulating the expression of antioxidative enzymes through the activation of the Nrf2-ARE pathway.


Assuntos
Chalconas/isolamento & purificação , Chalconas/farmacologia , Dermatite de Contato/patologia , Pavilhão Auricular/patologia , Perilla/química , Animais , Elementos de Resposta Antioxidante , Doença Crônica , Dermatite de Contato/etiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glutamato-Cisteína Ligase/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos
10.
Biol Pharm Bull ; 42(11): 1942-1946, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31462605

RESUMO

Amyloid ß protein (Aß) causes neurotoxicity and cognitive impairment in Alzheimer's disease (AD). Oxidative stress is closely related to the pathogenesis of AD. We have previously reported that 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC), a component of green perilla, enhances cellular resistance to oxidative damage through the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. Here, we investigated the effects of DDC on cortical neuronal death induced by Aß. When Aß and DDC had been preincubated for 3 h, the aggregation of Aß was significantly suppressed. In this condition, we found that DDC provided a neuroprotective action on Aß-induced cytotoxicity. Treatment with DDC for 24 h increased the expression of heme oxygenase-1 (HO-1), and this was controlled by the activation of the Nrf2-ARE pathway. However, DDC did not affect Aß-induced neuronal death under any of these conditions. These results suggest that DDC prevents the aggregation of Aß and inhibits neuronal death induced by Aß, and although it activates the Nrf2-ARE pathway, this mechanism is less involved its neuroprotective effect.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Chalcona/análogos & derivados , Chalcona/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/metabolismo , Heme Oxigenase-1/metabolismo , Síndromes Neurotóxicas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Perilla , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
11.
Biol Pharm Bull ; 42(11): 1936-1941, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31462615

RESUMO

Skin exposure to UV rays causes the production of reactive oxygen species (ROS), and it is a major risk factor for various skin disorders and diseases. In particular, exposure to UV-A is a major cause of photoaging. We have previously isolated 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC) from green perilla leaves as an activator of the nuclear factor erythroid 2-related factor-2 (Nrf2)-antioxidant response element (ARE) and demonstrated the protective effects of DDC both in vitro and in vivo in PC12 cells and Parkinson's disease models, respectively. In this study, we used HaCaT cells to examine the effects of DDC on ROS production and cell damage induced by UV-A. Our results indicated that UV-A irradiation in HaCaT cells increased ROS production in an energy-dependent manner. In addition, cell viability decreased in an energy-dependent manner 24 h after UV-A irradiation. However, treatment with DDC 24 h prior to UV-A irradiation significantly suppressed UV-A radiation-induced ROS production. In addition, DDC showed cytoprotective effects when used 24 h before and after UV-A irradiation. Treatment with DDC for 24 h also increased the expression levels of heme oxygenase-1 (HO-1) in a concentration-dependent manner. Pretreatment with the HO-1 inhibitor followed by DDC treatment before UV-A irradiation for 24 h reduced ROS production and the cytoprotective effect. These results suggest that DDC increases the expression levels of HO-1 and protects HaCaT cells through the suppression of UV radiation-induced ROS production.


Assuntos
Chalconas/farmacologia , Raios Ultravioleta/efeitos adversos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Humanos , Queratinócitos , Fator 2 Relacionado a NF-E2 , Perilla , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo
12.
Sci Rep ; 9(1): 11922, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31417133

RESUMO

Donepezil, a therapeutic drug for Alzheimer's disease, ameliorates cognitive dysfunction through selective inhibition of acetylcholinesterase. However, recent studies have also reported off-target effects of donepezil that likely contribute to its therapeutic effects. In this study, we investigated the (i) role of donepezil in amyloid precursor protein (APP) processing and (ii) involvement of sorting nexin protein 33 (SNX33), a member of the sorting nexin protein family, in this processing. Results showed that donepezil induces an increase in SNX33 expression in primary cortical neurons. The secretion of sAPPα in culture media increased, whereas the expression of full-length APP in the cell lysate remained unchanged. Exposure of cortical cultures to donepezil led to a decrease in amyloid ß (Aß) protein levels in a concentration- and time-dependent manner. This decrease was not affected by concomitant treatment with acetylcholine receptor antagonists. SNX33 knockdown by target-specific morpholino oligos inhibited the effects of donepezil. Donepezil treatment increased cell membrane surface expression of APP in SNX33 expression-dependent manner. These results suggested that donepezil decreases the level of Aß by increasing SNX33 expression and APP cleavage by α-secretase in cortical neurons.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Córtex Cerebral/citologia , Donepezila/farmacologia , Endocitose , Neurônios/metabolismo , Nexinas de Classificação/genética , Regulação para Cima , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Antagonistas Colinérgicos/farmacologia , Donepezila/uso terapêutico , Endocitose/efeitos dos fármacos , Morfolinos/farmacologia , Neurônios/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos Wistar , Receptores Colinérgicos/metabolismo , Nexinas de Classificação/metabolismo , Regulação para Cima/efeitos dos fármacos
13.
J Pharmacol Sci ; 129(3): 150-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26598004

RESUMO

Oxidative stress and the ubiquitin-proteasome system play a key role in the pathogenesis of Parkinson disease. Although the herbicide paraquat is an environmental factor that is involved in the etiology of Parkinson disease, the role of 26S proteasome in paraquat toxicity remains to be determined. Using PC12 cells overexpressing a fluorescent protein fused to the proteasome degradation signal, we report here that paraquat yielded an inhibitory effect on 26S proteasome activity without an obvious decline in 20S proteasome activity. Relative low concentrations of proteasome inhibitors caused the accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2), which is targeted to the ubiquitin-proteasome system, and activated the antioxidant response element (ARE)-dependent transcription. Paraquat also upregulated the protein level of Nrf2 without increased expression of Nrf2 mRNA, and activated the Nrf2-ARE pathway. Consequently, paraquat induced expression of Nrf2-dependent ARE-driven genes, such as γ-glutamylcysteine synthetase, catalase, and hemeoxygenase-1. Knockdown of Nrf2 or inhibition of γ-glutamylcysteine synthetase and catalase exacerbated paraquat-induced toxicity, whereas suppression of hemeoxygenase-1 did not. These data indicate that the compensatory activation of the Nrf2-ARE pathway via inhibition of 26S proteasome serves as part of a cellular defense mechanism to protect against paraquat toxicity.


Assuntos
Elementos de Resposta Antioxidante/fisiologia , Herbicidas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Paraquat/farmacologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Animais , Elementos de Resposta Antioxidante/genética , Catalase/fisiologia , Glutamato-Cisteína Ligase/fisiologia , Células PC12 , Doença de Parkinson/etiologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos
14.
Toxicol Sci ; 139(2): 466-78, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24743698

RESUMO

The herbicide paraquat is an environmental factor that may be involved in the etiology of Parkinson's disease (PD). Systemic exposure of mice to paraquat causes a selective loss of dopaminergic neurons in the substantia nigra pars compacta, although paraquat is not selectively incorporated in dopaminergic neurons. Here, we report a contribution of endogenous dopamine to paraquat-induced dopaminergic cell death. Exposure of PC12 cells to paraquat (50µM) caused delayed toxicity from 36 h onward. A decline in intracellular dopamine content achieved by inhibiting tyrosine hydroxylase (TH), an enzyme for dopamine synthesis, conferred resistance to paraquat toxicity on dopaminergic cells. Paraquat increased the levels of cytosolic and vesicular dopamine, accompanied by transiently increased TH activity. Quinone derived from cytosolic dopamine conjugates with cysteine residues in functional proteins to form quinoproteins. Formation of quinoprotein was transiently increased early during exposure to paraquat. Furthermore, pretreatment with ascorbic acid, which suppressed the elevations of intracellular dopamine and quinoprotein, almost completely prevented paraquat toxicity. These results suggest that the elevation of cytosolic dopamine induced by paraquat participates in the vulnerability of dopaminergic cells to delayed toxicity through the formation of quinoproteins.


Assuntos
Dopamina/metabolismo , Herbicidas/toxicidade , Paraquat/toxicidade , Animais , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Western Blotting , Catecol O-Metiltransferase/metabolismo , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Imuno-Histoquímica , Monoaminoxidase/metabolismo , Células PC12 , Ratos , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores
15.
Food Funct ; 5(5): 984-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24637610

RESUMO

Curcumin, a polyphenolic compound has several pharmacological activities, such as anticancer, anti-inflammatory and antioxidant effects. However, curcumin shows poor oral bioavailability. The purpose of this study was to investigate the protective effects of highly bioavailable curcumin, Theracurmin(®), and curcumin, against sodium nitroprusside (SNP)-induced oxidative damage in mice brain. Intrastriatal microinjection of Theracurmin(®) or curcumin with SNP significantly protected against SNP-induced brain damage and motor dysfunction. Oral administration of Theracurmin(®) (1 and 3 g kg(-1), containing 100 and 300 mg kg(-1) curcumin, respectively) significantly protected against SNP-induced brain damage and motor dysfunction. However, oral administration of 300 mg kg(-1) curcumin did not protect against motor dysfunction induced by SNP. These results suggest that curcumin and Theracurmin(®) have protective effects against SNP-induced oxidative damage. Moreover, oral administration of Theracurmin(®), had more potency in protecting against brain damage, suggesting a higher bioavailability of Theracurmin(®) following oral administration.


Assuntos
Encéfalo/efeitos dos fármacos , Curcumina/farmacocinética , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacocinética , Estresse Oxidativo/efeitos dos fármacos , Animais , Disponibilidade Biológica , Encéfalo/metabolismo , Curcumina/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Nitroprussiato/administração & dosagem , Nitroprussiato/efeitos adversos
16.
Neuropharmacology ; 77: 39-48, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24067927

RESUMO

Axonal degeneration of dopaminergic neurons is one of the pathological features in the early stages of Parkinson disease. Promotion of axonal outgrowth of the remaining dopaminergic neurons leads to the recovery of the nigrostriatal pathway. Staurosporine (STS), a wide-spectrum kinase inhibitor, induces neurite outgrowth in various cell types, although its mechanism of action remains elusive. In this study, we analyzed which protein kinase is involved in STS-induced neurite outgrowth. We have previously established the method to measure the length of dopaminergic neurites that extend from a mesencephalic cell region, which is formed on a coverslip by an isolation wall. By means of this method, we clarified that STS treatment causes dopaminergic axonal outgrowth in mesencephalic primary cultures. Among the specific protein kinase inhibitors we tested, compound C (C.C), an AMP-activated protein kinase (AMPK) inhibitor, promoted dopaminergic neurite outgrowth. STS as well as C.C elevated the phosphorylation level of 70-kDa ribosomal protein S6 kinase, a downstream target of mammalian target of rapamycin (mTOR) signaling pathway. The STS- and C.C-induced dopaminergic neurite outgrowth was suppressed by rapamycin, an mTOR inhibitor. Furthermore, the application of C.C rescued 1-methyl-4-phenylpyridinium ion (MPP(+))-induced dopaminergic neurite degeneration. These results suggest that STS induces dopaminergic axonal outgrowth through mTOR signaling pathway activation as a consequence of AMPK inhibition.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Neuritos/efeitos dos fármacos , Estaurosporina/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Neuritos/metabolismo , Neurogênese/efeitos dos fármacos , Células PC12 , Fosforilação/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
17.
Biol Pharm Bull ; 36(8): 1356-62, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23902979

RESUMO

Curcumin, a polyphenolic compound extracted from Curcuma longa, has several pharmacological activities such as anticancer, anti-inflammatory, and antioxidant effects. The purpose of this study was to investigate the protective effects of curcumin and THERACURMIN, a highly bioavailable curcumin, against sodium nitroprusside (SNP)-induced oxidative damage in primary striatal cell culture. THERACURMIN as well as curcumin significantly prevented SNP-induced cytotoxicity. To elucidate the cytoprotective effects of curcumin and THERACURMIN, we measured the intracellular glutathione level in striatal cells. Curcumin and THERACURMIN significantly elevated the glutathione level, which was decreased by treatment with SNP. Moreover, curcumin showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging ability. Finally, a ferrozine assay showed that curcumin (10-100 µg/mL) has potent Fe(2+)-chelating ability. These results suggest that curcumin and THERACURMIN exert potent protective effects against SNP-induced cytotoxicity by free radical-scavenging and iron-chelating activities.


Assuntos
Curcumina/farmacologia , Sequestradores de Radicais Livres/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Compostos de Bifenilo/metabolismo , Células Cultivadas , Corpo Estriado/citologia , Glutationa/metabolismo , Ferro/metabolismo , L-Lactato Desidrogenase/metabolismo , Nitroprussiato , Picratos/metabolismo , Ratos , Ratos Wistar
18.
Brain Res ; 1532: 99-105, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23954678

RESUMO

Serofendic acid is a low-molecular-weight compound extracted from fetal calf serum. We previously reported that intracerebroventricular administration of serofendic acid prevents cerebral ischemia-reperfusion injury. However, the effect of peripheral administration of serofendic acid on cerebral ischemia-reperfusion injury has not been examined. In the present study, we investigated the effect of intravenous administration of serofendic acid against cerebral ischemia-reperfusion injury using transient middle cerebral artery occlusion model rats. Serofendic acid (10mg/kg) administrated three times, including 30min before the onset of ischemia, just after the onset of ischemia and just before reperfusion reduced the infarct volume and improved the neurological dysfunction induced by ischemia-reperfusion without affecting regional cerebral blood flow or physiological parameters. However, there were no protective effects when serofendic acid (30mg/kg) was only administered once at 30min before the onset of ischemia, just after the onset of ischemia, or just before reperfusion. Our results reveal the importance of maintaining the blood concentration of serofendic acid for preventing cerebral ischemia-reperfusion injury.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Diterpenos/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Traumatismo por Reperfusão/tratamento farmacológico , Administração Intravenosa , Animais , Encéfalo/patologia , Diterpenos/uso terapêutico , Masculino , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley
19.
J Pharmacol Sci ; 122(2): 109-17, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23707972

RESUMO

Accumulating lines of evidence showed that luteolin, a polyphenolic compound, has potent neuroprotective effects. The purpose of this study was to examine whether luteolin can protect against sodium nitroprusside (SNP)-induced oxidative damage in mouse brain. Intrastriatal co-injection of luteolin (3 - 30 nmol) with SNP (10 nmol) dose-dependently protected against brain damage and motor dysfunction. Oral administrations of luteolin (600 - 1200 mg/kg) dose-dependently protected against brain damage and motor dysfunction induced by striatal injection of SNP. Furthermore, luteolin (30 - 100 µM) concentration dependently protected against Fe(2+)-induced lipid peroxidation in mouse brain homogenate. Luteolin (1 - 100 µg/ml) showed potent DPPH radical scavenging ability, when compared with ascorbic acid and glutathione. Finally, a ferrozine assay showed that luteolin (30 - 100 µg/ml) has Fe(2+)-chelating ability, but this was weaker than that of ethylenediaminetetraacetic acid. These results suggest that intrastriatal or oral administration of luteolin protected mice brain from SNP-induced oxidative damage by scavenging and chelating effects.


Assuntos
Dano Encefálico Crônico/induzido quimicamente , Dano Encefálico Crônico/prevenção & controle , Luteolina/farmacologia , Nitroprussiato/administração & dosagem , Nitroprussiato/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Administração Oftálmica , Animais , Antioxidantes , Corpo Estriado , Modelos Animais de Doenças , Sequestradores de Radicais Livres , Quelantes de Ferro , Luteolina/administração & dosagem , Camundongos , Camundongos Endogâmicos ICR , Microinjeções , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores , Estresse Oxidativo/fisiologia
20.
J Pharmacol Sci ; 120(2): 105-11, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23018898

RESUMO

Sodium nitroprusside (SNP) is widely used as a potent vasodilator and a nitric oxide (NO) donor, whereas the cytotoxicity of SNP has been well documented. SNP releases several potentially toxic products such as cyanide anion, NO, and iron. We investigated the mechanisms of cell death and motor dysfunction induced by microinjection of SNP in mice to establish a brain oxidative stress model and then examined the anti-oxidant activity of glutathione. Intrastriatal microinjection of SNP (1 - 10 nmol) induced brain damage and motor dysfunction in a dose-dependent manner when the effects were evaluated with behavioral tests and TTC staining. NOC-18 (10 nmol), another NO donor, and KCN (10 nmol) did not cause motor dysfunction. However, FeCl(2) (10 nmol) caused motor dysfunction. In addition, simultaneous injection of SNP and deferoxamine (10 nmol), an iron-chelating agent, prevented SNP-induced brain damage and motor dysfunction, suggesting a role of iron-related radicals in SNP-toxicity. Moreover, reduced glutathione (1 - 10 nmol), a natural anti-oxidant substance, dose-dependently prevented motor dysfunction induced by SNP-toxicity. Finally, deferoxamine and glutathione (10 nmol) significantly protected against brain damage and motor dysfunction induced by FeCl(2) toxicity. These results suggest that cell death induced by injection of SNP is caused by iron-related radical reactions, but not by NO and cyanide anion.


Assuntos
Encéfalo/efeitos dos fármacos , Modelos Animais , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Estresse Oxidativo , Vasodilatadores/farmacologia , Animais , Encéfalo/metabolismo , Desferroxamina/farmacologia , Compostos Ferrosos/toxicidade , Glutationa/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microinjeções , Atividade Motora/efeitos dos fármacos , Doadores de Óxido Nítrico/administração & dosagem , Nitroprussiato/administração & dosagem , Vasodilatadores/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...