Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocr Pathol ; 35(1): 40-50, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38165630

RESUMO

Papillary thyroid carcinoma (PTC) is the most common type of thyroid carcinoma and has characteristic nuclear features. Genetic abnormalities of PTC affect recent molecular target therapeutic strategy towards RET-altered cases, and they affect clinical prognosis and progression. However, there has been insufficient objective analysis of the correlation between genetic abnormalities and nuclear features. Using our newly developed methods, we studied the correlation between nuclear morphology and molecular abnormalities of PTC with the aim of predicting genetic abnormalities of PTC. We studied 72 cases of PTC and performed genetic analysis to detect BRAF p.V600E mutation and RET fusions. Nuclear features of PTC, such as nuclear grooves, pseudo-nuclear inclusions, and glassy nuclei, were also automatically detected by deep learning models. After analyzing the correlation between genetic abnormalities and nuclear features of PTC, logistic regression models could be used to predict gene abnormalities. Nuclear features were accurately detected with over 0.90 of AUCs in every class. The ratio of glassy nuclei to nuclear groove and the ratio of pseudo-nuclear inclusion to glassy nuclei were significantly higher in cases that were positive for RET fusions (p = 0.027, p = 0.043, respectively) than in cases that were negative for RET fusions. RET fusions were significantly predicted by glassy nuclei/nuclear grooves, pseudo-nuclear inclusions/glassy nuclei, and age (p = 0.023). Our deep learning models could accurately detect nuclear features. Genetic abnormalities had a correlation with nuclear features of PTC. Furthermore, our artificial intelligence model could significantly predict RET fusions of classic PTC.


Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , Inteligência Artificial , Carcinoma Papilar/genética , Carcinoma Papilar/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Mutação
2.
Am J Clin Pathol ; 158(6): 759-769, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36197883

RESUMO

OBJECTIVES: Pathologic diagnosis of flat urothelial lesions is subject to high interobserver variability. We expected that deep learning could improve the accuracy and consistency of such pathologic diagnosis, although the learning process is a black box. We therefore propose a new approach for pathologic image classification incorporating the diagnostic process of the pathologist into a deep learning method. METHODS: A total of 267 H&E-stained slides of normal urothelium and urothelial lesions from 127 cases were examined. Six independent convolutional neural networks were trained to classify pathologic images according to six pathologic criteria. We then used these networks in the main training for the final diagnosis. RESULTS: Compared with conventional manual analysis, our method significantly improved the classification accuracy of images of flat urothelial lesions. The automated classification showed almost perfect agreement (weighted κ = 0.98) with the consensus reading. In addition, our approach provides the advantages of reliable diagnosis corresponding to histologic interpretation. CONCLUSIONS: We used deep learning to establish an automated subtype classifier for flat urothelial lesions that successfully combines traditional morphologic approaches and complex deep learning to achieve a learning mechanism that seems plausible to the pathologist.


Assuntos
Aprendizado Profundo , Urotélio , Humanos , Urotélio/patologia , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...