Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 163(5): 1391-1406.e24, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35963362

RESUMO

BACKGROUND & AIMS: In the mouse intestinal epithelium, Lgr5+ stem cells are vulnerable to injury, owing to their predominantly cycling nature, and their progenies de-differentiate to replenish the stem cell pool. However, how human colonic stem cells behave in homeostasis and during regeneration remains unknown. METHODS: Transcriptional heterogeneity among colonic epithelial cells was analyzed by means of single-cell RNA sequencing analysis of human and mouse colonic epithelial cells. To trace the fate of human colonic stem or differentiated cells, we generated LGR5-tdTomato, LGR5-iCasase9-tdTomato, LGR5-split-Cre, and KRT20-ERCreER knock-in human colon organoids via genome engineering. p27+ dormant cells were further visualized with the p27-mVenus reporter. To analyze the dynamics of human colonic stem cells in vivo, we orthotopically xenotransplanted fluorescence-labeled human colon organoids into immune-deficient mice. The cell cycle dynamics in xenograft cells were evaluated using 5-ethynyl-2'-deoxyuridine pulse-chase analysis. The clonogenic capacity of slow-cycling human stem cells or differentiated cells was analyzed in the context of homeostasis, LGR5 ablation, and 5-fluorouracil-induced mucosal injury. RESULTS: Single-cell RNA sequencing analysis illuminated the presence of nondividing LGR5+ stem cells in the human colon. Visualization and lineage tracing of slow-cycling LGR5+p27+ cells and orthotopic xenotransplantation validated their homeostatic lineage-forming capability in vivo, which was augmented by 5-FU-induced mucosal damage. Transforming growth factor-ß signaling regulated the quiescent state of LGR5+ cells. Despite the plasticity of differentiated KRT20+ cells, they did not display clonal growth after 5-FU-induced injury, suggesting that occupation of the niche environment by LGR5+p27+ cells prevented neighboring differentiated cells from de-differentiating. CONCLUSIONS: Our results highlight the quiescent nature of human LGR5+ colonic stem cells and their contribution to post-injury regeneration.


Assuntos
Receptores Acoplados a Proteínas G , Células-Tronco , Humanos , Camundongos , Animais , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/metabolismo , Colo/metabolismo , Mucosa Intestinal/metabolismo , Fluoruracila , Fatores de Crescimento Transformadores/metabolismo
2.
Nature ; 608(7924): 784-794, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35798028

RESUMO

Cancer relapse after chemotherapy remains a main cause of cancer-related death. Although the relapse is thought to result from the propagation of resident cancer stem cells1, a lack of experimental platforms that enable the prospective analysis of cancer stem cell dynamics with sufficient spatiotemporal resolution has hindered the testing of this hypothesis. Here we develop a live genetic lineage-tracing system that allows the longitudinal tracking of individual cells in xenotransplanted human colorectal cancer organoids, and identify LGR5+ cancer stem cells that exhibit a dormant behaviour in a chemo-naive state. Dormant LGR5+ cells are marked by the expression of p27, and intravital imaging provides direct evidence of the persistence of LGR5+p27+ cells during chemotherapy, followed by clonal expansion. Transcriptome analysis reveals that COL17A1-a cell-adhesion molecule that strengthens hemidesmosomes-is upregulated in dormant LGR5+p27+ cells. Organoids in which COL17A1 is knocked out lose the dormant LGR5+p27+ subpopulation and become sensitive to chemotherapy, which suggests that the cell-matrix interface has a role in the maintenance of dormancy. Chemotherapy disrupts COL17A1 and breaks the dormancy in LGR5+p27+ cells through FAK-YAP activation. Abrogation of YAP signalling prevents chemoresistant cells from exiting dormancy and delays the regrowth of tumours, highlighting the therapeutic potential of YAP inhibition in preventing cancer relapse. These results offer a viable therapeutic approach to overcome the refractoriness of human colorectal cancer to conventional chemotherapy.


Assuntos
Neoplasias do Colo , Células-Tronco Neoplásicas , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem da Célula , Proliferação de Células , Rastreamento de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Quinase 1 de Adesão Focal/metabolismo , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Colágenos não Fibrilares/metabolismo , Organoides/metabolismo , Organoides/patologia , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição/metabolismo , Colágeno Tipo XVII
3.
Nat Chem Biol ; 18(6): 605-614, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35273398

RESUMO

Precision oncology presumes an accurate prediction of drug response on the basis of the molecular profile of tumors. However, the extent to which patient-derived tumor organoids recapitulate the response of in vivo tumors to a given drug remains obscure. To gain insights into the pharmacobiology of human colorectal cancer (CRC), we here created a robust drug screening platform for patient-derived colorectal organoids. Application of suspension culture increased organoid scalability, and a refinement of the culture condition enabled incorporation of normal and precursor organoids to high-throughput drug screening. Drug screening identified bromodomain and extra-terminal (BET) bromodomain protein inhibitor as a cancer-selective growth suppressor that targets genes aberrantly activated in CRC. A multi-omics analysis identified an association between checkpoint with forkhead and ring finger domaines (CHFR) silencing and paclitaxel sensitivity, which was further validated by gene engineering of organoids and in xenografts. Our findings highlight the utility of multiparametric validation in enhancing the biological and clinical fidelity of a drug screening system.


Assuntos
Neoplasias Colorretais , Organoides , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Detecção Precoce de Câncer , Epigênese Genética , Humanos , Organoides/patologia , Medicina de Precisão
4.
Mol Ther Methods Clin Dev ; 23: 424-433, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34786435

RESUMO

Two patients with adenosine deaminase (ADA)-deficient severe combined immunodeficiency (ADA-SCID) received stem cell-based gene therapy (SCGT) using GCsapM-ADA retroviral vectors without preconditioning in 2003 and 2004. The first patient (Pt1) was treated at 4.7 years old, and the second patient (Pt2), who had previously received T cell gene therapy (TCGT), was treated at 13 years old. More than 10 years after SCGT, T cells showed a higher vector copy number (VCN) than other lineages. Moreover, the VCN increased with differentiation toward memory T and B cells. The distribution of vector-marked cells reflected variable levels of ADA requirements in hematopoietic subpopulations. Although neither patient developed leukemia, clonal expansion of SCGT-derived clones was observed in both patients. The use of retroviral vectors yielded clonal dominance of vector-marked clones, irrespective of the lack of leukemic changes. Vector integration sites common to all hematopoietic lineages suggested the engraftment of gene-marked progenitors in Pt1, who showed severe osteoblast (OB) insufficiency compared to Pt2, which might cause a reduction in the stem/progenitor cells in the bone marrow (BM). The impaired BM microenvironment due to metabolic abnormalities may create space for the engraftment of vector-marked cells in ADA-SCID, despite the lack of preconditioning.

5.
Nature ; 592(7852): 99-104, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33627870

RESUMO

The small intestine is the main organ for nutrient absorption, and its extensive resection leads to malabsorption and wasting conditions referred to as short bowel syndrome (SBS). Organoid technology enables an efficient expansion of intestinal epithelium tissue in vitro1, but reconstruction of the whole small intestine, including the complex lymphovascular system, has remained challenging2. Here we generate a functional small intestinalized colon (SIC) by replacing the native colonic epithelium with ileum-derived organoids. We first find that xenotransplanted human ileum organoids maintain their regional identity and form nascent villus structures in the mouse colon. In vitro culture of an organoid monolayer further reveals an essential role for luminal mechanistic flow in the formation of villi. We then develop a rat SIC model by repositioning the SIC at the ileocaecal junction, where the epithelium is exposed to a constant luminal stream of intestinal juice. This anatomical relocation provides the SIC with organ structures of the small intestine, including intact vasculature and innervation, villous structures, and the lacteal (a fat-absorbing lymphatic structure specific to the small intestine). The SIC has absorptive functions and markedly ameliorates intestinal failure in a rat model of SBS, whereas transplantation of colon organoids instead of ileum organoids invariably leads to mortality. These data provide a proof of principle for the use of intestinal organoids for regenerative purposes, and offer a feasible strategy for SBS treatment.


Assuntos
Colo/citologia , Íleo/transplante , Mucosa Intestinal/citologia , Organoides/transplante , Regeneração , Medicina Regenerativa/métodos , Síndrome do Intestino Curto/terapia , Animais , Colo/irrigação sanguínea , Colo/inervação , Colo/cirurgia , Modelos Animais de Doenças , Xenoenxertos , Humanos , Íleo/citologia , Mucosa Intestinal/irrigação sanguínea , Mucosa Intestinal/inervação , Mucosa Intestinal/cirurgia , Masculino , Técnicas de Cultura de Órgãos , Organoides/citologia , Ratos , Ratos Endogâmicos Lew , Síndrome do Intestino Curto/patologia , Síndrome do Intestino Curto/cirurgia
6.
Gastroenterology ; 160(3): 823-830, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217450

RESUMO

BACKGROUND AND AIMS: Diffuse-type gastric cancer (GC) is currently subdivided into signet-ring cell carcinoma (SRCC) and non-SRCC, referred to as poorly cohesive carcinoma not otherwise specified (PCC-NOS). Although these subtypes are considered to be independent, they often coexist in the same tumors, raising a question of whether they clonally differ or not. To tackle this question, we established an experimental platform for human diffuse GC that enables accurate modeling of histologic subtypes. METHODS: Seven patient-derived diffuse GC organoid lines were established, characterized by histopathologic analysis, in situ hybridization, and gene expression analysis. For genetic modeling of diffuse GC, we knocked out CDH1 and/or TP53 in human normal gastric organoids. Green fluorescent protein-labeled GC organoids were xenotransplanted into immune-deficient mice for in vivo assessment. RESULTS: PCC-NOS organoids transformed into SRCC-like structures on removal of Wnt and R-spondin from the culture medium. This morphologic change paralleled downregulation of Wnt-target and gastric stem cell genes, including LGR5, and elevation of differentiation markers, such as KRT20 and MUCs. The association between Wnt target gene expression and histologic subtypes was confirmed in 3 patient-derived GC tissues. In vivo, single clone-derived organoids formed tumors that comprised 2 distinct histologic compartments, each corresponding to SRCC and PCC-NOS. The transition from PCC-NOS to SRCC histology reflected the abundance of surrounding R-spondin-expressing fibroblasts. CONCLUSIONS: SRCC and PCC-NOS were clonally identical, and their morphology was regulated by extracellular Wnt and R-spondin expression. Our results decoded how genetic mutations and the tumor environment shape pathohistologic and biologic phenotypes in human diffuse GCs.


Assuntos
Carcinoma de Células em Anel de Sinete/parasitologia , Mucosa Gástrica/patologia , Neoplasias Gástricas/patologia , Via de Sinalização Wnt , Idoso , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Carcinoma de Células em Anel de Sinete/genética , Feminino , Mucosa Gástrica/citologia , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Organoides/patologia , Cultura Primária de Células , RNA-Seq , Neoplasias Gástricas/genética , Trombospondinas , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Sequenciamento do Exoma , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cell ; 183(5): 1420-1435.e21, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33159857

RESUMO

Gastroenteropancreatic (GEP) neuroendocrine neoplasm (NEN) that consists of neuroendocrine tumor and neuroendocrine carcinoma (NEC) is a lethal but under-investigated disease owing to its rarity. To fill the scarcity of clinically relevant models of GEP-NEN, we here established 25 lines of NEN organoids and performed their comprehensive molecular characterization. GEP-NEN organoids recapitulated pathohistological and functional phenotypes of the original tumors. Whole-genome sequencing revealed frequent genetic alterations in TP53 and RB1 in GEP-NECs, and characteristic chromosome-wide loss of heterozygosity in GEP-NENs. Transcriptome analysis identified molecular subtypes that are distinguished by the expression of distinct transcription factors. GEP-NEN organoids gained independence from the stem cell niche irrespective of genetic mutations. Compound knockout of TP53 and RB1, together with overexpression of key transcription factors, conferred on the normal colonic epithelium phenotypes that are compatible with GEP-NEN biology. Altogether, our study not only provides genetic understanding of GEP-NEN, but also connects its genetics and biological phenotypes.


Assuntos
Bancos de Espécimes Biológicos , Tumores Neuroendócrinos/patologia , Organoides/patologia , Animais , Cromossomos Humanos/genética , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Masculino , Camundongos , Modelos Genéticos , Mutação/genética , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Transcriptoma/genética , Sequenciamento Completo do Genoma
8.
Nature ; 577(7789): 254-259, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853059

RESUMO

With ageing, normal human tissues experience an expansion of somatic clones that carry cancer mutations1-7. However, whether such clonal expansion exists in the non-neoplastic intestine remains unknown. Here, using whole-exome sequencing data from 76 clonal human colon organoids, we identify a unique pattern of somatic mutagenesis in the inflamed epithelium of patients with ulcerative colitis. The affected epithelium accumulates somatic mutations in multiple genes that are related to IL-17 signalling-including NFKBIZ, ZC3H12A and PIGR, which are genes that are rarely affected in colon cancer. Targeted sequencing validates the pervasive spread of mutations that are related to IL-17 signalling. Unbiased CRISPR-based knockout screening in colon organoids reveals that the mutations confer resistance to the pro-apoptotic response that is induced by IL-17A. Some of these genetic mutations are known to exacerbate experimental colitis in mice8-11, and somatic mutagenesis in human colon epithelium may be causally linked to the inflammatory process. Our findings highlight a genetic landscape that adapts to a hostile microenvironment, and demonstrate its potential contribution to the pathogenesis of ulcerative colitis.


Assuntos
Colite Ulcerativa/genética , Epitélio/metabolismo , Interleucina-17/genética , Mutação , Colite Ulcerativa/metabolismo , Humanos , Interleucina-17/metabolismo , Fenótipo , Transdução de Sinais
9.
Gastroenterology ; 158(3): 638-651.e8, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31622618

RESUMO

BACKGROUND & AIMS: Traditional serrated adenomas (TSAs) are rare colorectal polyps with unique histologic features. Fusions in R-spondin genes have been found in TSAs, but it is not clear whether these are sufficient for TSA development, due to the lack of a chromosome engineering platform for human tissues. We studied the effects of fusions in R-spondin genes and other genetic alterations found in TSA using CRISPR-Cas9-mediated chromosome and genetic modification of human colonic organoids. METHODS: We introduced chromosome rearrangements that involve R-spondin genes into human colonic organoids, with or without disruption of TP53, using CRISPR-Cas9 (chromosome-engineered organoids). We then knocked a mutation into BRAF encoding the V600E substitution and overexpressed the GREM1 transgene; the organoids were transplanted into colons of NOG mice and growth of xenograft tumors was measured. Colon tissues were collected and analyzed by immunohistochemistry or in situ hybridization. We also established 2 patient-derived TSA organoid lines and characterized their genetic features and phenotypes. We inserted a bicistronic cassette expressing a dimerizer-inducible suicide gene and fluorescent marker downstream of the LGR5 gene in the chromosome-engineered organoids; addition of the dimerizer eradicates LGR5+ cells. Some tumor-bearing mice were given intraperitoneal injections of the dimerizer to remove LGR5-expressing cells. RESULTS: Chromosome engineering of organoids required disruption of TP53 or culture in medium containing IGF1 and FGF2. In colons of mice, organoids that expressed BRAFV600E and fusions in R-spondin genes formed flat serrated lesions. Patient-derived TSA organoids grew independent of exogenous R-spondin, and 1 line grew independent of Noggin. Organoids that overexpressed GREM1, in addition to BRAFV600E and fusions in R-spondin genes, formed polypoid tumors in mice that had histologic features similar to TSAs. Xenograft tumors persisted after loss of LGR5-expressing cells. CONCLUSIONS: We demonstrated efficient chromosomal engineering of human normal colon organoids. We introduced genetic and chromosome alterations into human colon organoids found in human TSAs; tumors grown from these organoids in mice had histopathology features of TSAs. This model might be used to study progression of human colorectal tumors with RSPO fusion gene and GREM1 overexpression.


Assuntos
Adenoma/genética , Neoplasias do Colo/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Organoides/patologia , Trombospondinas/genética , Adenoma/patologia , Animais , Sistemas CRISPR-Cas , Neoplasias do Colo/patologia , Fator de Iniciação 3 em Eucariotos/genética , Fusão Gênica , Engenharia Genética , Humanos , Masculino , Camundongos , Modelos Biológicos , Transplante de Neoplasias , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Receptores Acoplados a Proteínas G/genética , Proteína Supressora de Tumor p53/genética , Via de Sinalização Wnt
10.
Cell ; 174(4): 856-869.e17, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096312

RESUMO

Recent sequencing analyses have shed light on heterogeneous patterns of genomic aberrations in human gastric cancers (GCs). To explore how individual genetic events translate into cancer phenotypes, we established a biological library consisting of genetically engineered gastric organoids carrying various GC mutations and 37 patient-derived organoid lines, including rare genomically stable GCs. Phenotype analyses of GC organoids revealed divergent genetic and epigenetic routes to gain Wnt and R-spondin niche independency. An unbiased phenotype-based genetic screening identified a significant association between CDH1/TP53 compound mutations and the R-spondin independency that was functionally validated by CRISPR-based knockout. Xenografting of GC organoids further established the feasibility of Wnt-targeting therapy for Wnt-dependent GCs. Our results collectively demonstrate that multifaceted genetic abnormalities render human GCs independent of the stem cell niche and highlight the validity of the genotype-phenotype screening strategy in gaining deeper understanding of human cancers.


Assuntos
Adenocarcinoma/patologia , Organoides/patologia , Neoplasias Gástricas/patologia , Estômago/patologia , Trombospondinas/metabolismo , Proteínas Wnt/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Antígenos CD/genética , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Caderinas/genética , Carcinogênese , Proliferação de Células , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Organoides/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Trombospondinas/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteínas Wnt/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell Stem Cell ; 22(3): 454-467.e6, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29337182

RESUMO

Despite recent efforts to dissect the inter-tumor heterogeneity of pancreatic ductal adenocarcinoma (PDAC) by determining prognosis-predictive gene expression signatures for specific subtypes, their functional differences remain elusive. Here, we established a pancreatic tumor organoid library encompassing 39 patient-derived PDACs and identified 3 functional subtypes based on their stem cell niche factor dependencies on Wnt and R-spondin. A Wnt-non-producing subtype required Wnt from cancer-associated fibroblasts, whereas a Wnt-producing subtype autonomously secreted Wnt ligands and an R-spondin-independent subtype grew in the absence of Wnt and R-spondin. Transcriptome analysis of PDAC organoids revealed gene-expression signatures that associated Wnt niche subtypes with GATA6-dependent gene expression subtypes, which were functionally supported by genetic perturbation of GATA6. Furthermore, CRISPR-Cas9-based genome editing of PDAC driver genes (KRAS, CDKN2A, SMAD4, and TP53) demonstrated non-genetic acquisition of Wnt niche independence during pancreas tumorigenesis. Collectively, our results reveal functional heterogeneity of Wnt niche independency in PDAC that is non-genetically formed through tumor progression.


Assuntos
Progressão da Doença , Organoides/patologia , Neoplasias Pancreáticas/patologia , Nicho de Células-Tronco , Sistemas CRISPR-Cas/genética , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Fator de Transcrição GATA6/metabolismo , Regulação Neoplásica da Expressão Gênica , Engenharia Genética , Humanos , Ligantes , Neoplasias Pancreáticas/genética , Via de Sinalização Wnt
12.
Mol Ther Methods Clin Dev ; 6: 8-16, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28626778

RESUMO

Clinical improvement in stem cell gene therapy (SCGT) for primary immunodeficiencies depends on the engraftment levels of genetically corrected cells, and tracing the transgene in each hematopoietic lineage is therefore extremely important in evaluating the efficacy of SCGT. We established a single cell-based droplet digital PCR (sc-ddPCR) method consisting of the encapsulation of a single cell into each droplet, followed by emulsion PCR with primers and probes specific for the transgene. A fluorescent signal in a droplet indicates the presence of a single cell carrying the target gene in its genome, and this system can clearly determine the ratio of transgene-positive cells in the entire population at the genomic level. Using sc-ddPCR, we analyzed the engraftment of vector-transduced cells in two patients with severe combined immunodeficiency (SCID) who were treated with SCGT. Sufficient engraftment of the transduced cells was limited to the T cell lineage in peripheral blood (PB), and a small percentage of CD34+ cells exhibited vector integration in bone marrow, indicating that the transgene-positive cells in PB might have differentiated from a small population of stem cells or lineage-restricted precursor cells. sc-ddPCR is a simplified and powerful tool for the detailed assessment of transgene-positive cell distribution in patients treated with SCGT.

13.
Clin Exp Nephrol ; 16(1): 89-95, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22038265

RESUMO

Humans have higher serum uric acid levels than other mammalian species owing to the genetic silencing of the hepatic enzyme uricase that metabolizes uric acid into allantoin. Urate (the ionized form of uric acid) is generated from purine metabolism and it may provide antioxidant defense in the human body. Despite its potential advantage, sustained hyperuricemia has pathogenetic causes in gout and renal diseases, and putative roles in hypertension and cardiovascular diseases. Since the kidney plays a dominant role in maintaining plasma urate levels through the excretion process, it is important to understand the molecular mechanism of renal urate handling. Although the molecular identification of a kidney-specific urate/anion exchanger URAT1 in 2002 paved the way for successive identification of several urate transport-related proteins, the entire picture of effective renal urate handling in humans has not yet been clarified. Recently, several genome-wide association studies identified a substantial association between uric acid concentration and single nucleotide polymorphisms in at least ten genetic loci including eight transporter-coding genes. In 2008, we functionally characterized the facilitatory glucose transporter family member SLC2A9 (GLUT9), one of the candidate genes for urate handling, as a voltage-driven urate transporter URATv1 at the basolateral side of renal proximal tubules that comprises the main route of the urate reabsorption pathway, in tandem with URAT1 at the apical side. In this review, recent findings concerning these candidate molecules are presented.


Assuntos
Hiperuricemia/metabolismo , Túbulos Renais Proximais/metabolismo , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Ácido Úrico/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Estudo de Associação Genômica Ampla , Proteínas Facilitadoras de Transporte de Glucose/genética , Humanos , Proteínas de Membrana/fisiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Proteínas Cotransportadoras de Sódio-Fosfato Tipo I/genética , Ácido Úrico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...