Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(15): 153402, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37115891

RESUMO

We observe a weakly allowed optical transition of atomic ytterbium from the ground state to the metastable state 4f^{13}5d6s^{2} (J=2) for all five bosonic and two fermionic isotopes with resolved Zeeman and hyperfine structures. This inner-shell orbital transition has been proposed as a new frequency standard as well as a quantum sensor for new physics. We find magic wavelengths through the measurement of the scalar and tensor polarizabilities and reveal that the measured trap lifetime in a three-dimensional optical lattice is 1.9(1) s, which is crucial for precision measurements. We also determine the g factor by an interleaved measurement, consistent with our relativistic atomic calculation. This work opens the possibility of an optical lattice clock with improved stability and accuracy as well as novel approaches for physics beyond the standard model.

2.
Phys Rev Lett ; 130(6): 063001, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36827577

RESUMO

We report the observation of the sign reversal of the magnetic correlation from antiferromagnetic to ferromagnetic in a dissipative Fermi gas in double wells, utilizing the dissipation caused by on-site two-body losses in a controlled manner. We systematically measure dynamics of the nearest-neighbor spin correlation in an isolated double-well optical lattice, as well as a crossover from an isolated double-well lattice to a one-dimensional uniform lattice. In a wide range of lattice configurations over an isolated double-well lattice, we observe a ferromagnetic spin correlation, which is consistent with a Dicke type of correlation expected in the long-time limit. This work demonstrates the control of quantum magnetism in open quantum systems with dissipation.

3.
Proc Jpn Acad Ser B Phys Biol Sci ; 98(4): 141-160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35400693

RESUMO

Ultracold atoms in an optical lattice provide a unique approach to study quantum many-body systems, previously only possible by using condensed-matter experimental systems. This new approach, often called quantum simulation, becomes possible because of the high controllability of the system parameters and the inherent cleanness without lattice defects and impurities. In this article, we review recent developments in this rapidly growing field of ultracold atoms in an optical lattice, with special focus on quantum simulations using our newly created quantum many-body system of two-electron atoms of ytterbium. In addition, we also mention other interesting possibilities offered by this novel experimental platform, such as applications to precision measurements for studying fundamental physics and a Rydberg atom quantum computation.

4.
Nat Commun ; 12(1): 6724, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795240

RESUMO

Quantum transport is ubiquitous in physics. So far, quantum transport between terminals has been extensively studied in solid state systems from the fundamental point of views such as the quantized conductance to the applications to quantum devices. Recent works have demonstrated a cold-atom analog of a mesoscopic conductor by engineering a narrow conducting channel with optical potentials, which opens the door for a wealth of research of atomtronics emulating mesoscopic electronic devices and beyond. Here we realize an alternative scheme of the quantum transport experiment with ytterbium atoms in a two-orbital optical lattice system. Our system consists of a multi-component Fermi gas and a localized impurity, where the current can be created in the spin space by introducing the spin-dependent interaction with the impurity. We demonstrate a rich variety of localized-impurity-induced quantum transports, which paves the way for atomtronics exploiting spin degrees of freedom.

5.
Sci Adv ; 6(40)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32998897

RESUMO

An optical lattice quantum simulator is an ideal experimental platform to investigate nonequilibrium dynamics of a quantum many-body system, which is, in general, hard to simulate with classical computers. Here, we use our quantum simulator of the Bose-Hubbard model to study dynamics far from equilibrium after a quantum quench. We successfully confirm the energy conservation law in the one- and three-dimensional systems and extract the propagation velocity of the single-particle correlation in the one- and two-dimensional systems. We corroborate the validity of our quantum simulator through quantitative comparisons between the experiments and the exact numerical calculations in one dimension. In the computationally hard cases of two or three dimensions, by using the quantum-simulation results as references, we examine the performance of a numerical method, namely, the truncated Wigner approximation, revealing its usefulness and limitation. This work constitutes an exemplary case for the usage of analog quantum simulators.

6.
Sci Rep ; 10(1): 1628, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31988388

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Nat Commun ; 11(1): 257, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953464

RESUMO

Quantum interference lies at the heart of quantum mechanics. By utilizing destructive interference, it is possible to transfer a physical object between two states without populating an intermediate state which is necessary to connect the initial and final states. A famous application is a technique of stimulated Raman adiabatic passage, where atomic internal states can be transfered with high efficiency regardless of lossy intermediate states. One interesting situation is a case where the initial and final states are spatially well separated. Quantum mechanics allows a particle to move without practical possibility of being found at the intermediate area. Here we demonstrate this spatial adiabatic passage with ultracold atoms in an optical lattice. Key to this is the existence of dark eigenstates forming a flat energy band, with effective transfer between two sublattices being observed. This work sheds light on a study of coherent control of trapped cold atoms.

8.
Sci Rep ; 9(1): 14807, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616025

RESUMO

Several extensions to the Standard Model of particle physics, including light dark matter candidates and unification theories predict deviations from Newton's law of gravitation. For macroscopic distances, the inverse-square law of gravitation is well confirmed by astrophysical observations and laboratory experiments. At micrometer and shorter length scales, however, even the state-of-the-art constraints on deviations from gravitational interaction, whether provided by neutron scattering or precise measurements of forces between macroscopic bodies, are currently many orders of magnitude larger than gravity itself. Here we show that precision spectroscopy of weakly bound molecules can be used to constrain non-Newtonian interactions between atoms. A proof-of-principle demonstration using recent data from photoassociation spectroscopy of weakly bound Yb2 molecules yields constraints on these new interactions that are already close to state-of-the-art neutron scattering experiments. At the same time, with the development of the recently proposed optical molecular clocks, the neutron scattering constraints could be surpassed by at least two orders of magnitude.

9.
Phys Rev Lett ; 121(22): 225303, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547600

RESUMO

Large-spin cold atomic systems can exhibit unique phenomena that do not appear in spin-1/2 systems. We report the observation of nearest-neighbor antiferromagnetic spin correlations of a Fermi gas with SU(N) symmetry trapped in an optical lattice. The precise control of the spin degrees of freedom provided by an optical pumping technique enables us a straightforward comparison between the cases of SU(2) and SU(4). Our important finding is that the antiferromagnetic correlation is enhanced for the SU(4)-spin system compared with SU(2) as a consequence of a Pomeranchuk cooling effect. This work is an important step towards the realization of novel SU(N>2) quantum magnetism.

10.
Sci Rep ; 8(1): 10699, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013212

RESUMO

The Dirac fermion is an important fundamental particle appearing in high-energy physics and topological insulator physics. In particular, a Dirac fermion in a one-dimensional lattice system exhibits the essential properties of topological physics. However, the system has not been quantum simulated in experiments yet. Herein, we propose a one-dimensional generalized lattice Wilson-Dirac fermion model and study its topological phase structure. We show the experimental setups of an atomic quantum simulator for the model, in which two parallel optical lattices with the same tilt for trapping cold fermion atoms and a laser-assisted hopping scheme are used. Interestingly, we find that the model exhibits nontrivial topological phases characterized by gapless edge modes and a finite winding number in the broad regime of the parameter space. Some of the phase diagrams closely resemble those of the Haldane model. We also discuss topological charge pumping and a lattice Gross-Neveu model in the system of generalized Wilson-Dirac fermions.

11.
Phys Rev Lett ; 118(17): 175301, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28498699

RESUMO

We report the momentum-resolved measurement of Bloch bands in an optical Lieb lattice for a Bose-Einstein condensate (BEC). A BEC in the lattice is transported to a desired quasimomentum by applying a constant force. The energy dispersion of the lowest band is obtained by integrating measured group velocities. We also measure the gap from the lowest band to the higher bands with the same quasimomentum, which can be extracted from the oscillation of the sublattice populations after preparing a superposition of the band eigenstates. We show that the experimental results agree with a band calculation based on the Bogoliubov approximation. It is revealed that the second band, which should be flat in a single-particle description, is shifted and, in particular, distorted around the Brillouin zone edge as the interaction strength increases.

12.
Sci Adv ; 3(12): e1701513, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29291246

RESUMO

Dissipation is ubiquitous in nature and plays a crucial role in quantum systems such as causing decoherence of quantum states. Recently, much attention has been paid to an intriguing possibility of dissipation as an efficient tool for the preparation and manipulation of quantum states. We report the realization of successful demonstration of a novel role of dissipation in a quantum phase transition using cold atoms. We realize an engineered dissipative Bose-Hubbard system by introducing a controllable strength of two-body inelastic collision via photoassociation for ultracold bosons in a three-dimensional optical lattice. In the dynamics subjected to a slow ramp-down of the optical lattice, we find that strong on-site dissipation favors the Mott insulating state: The melting of the Mott insulator is delayed, and the growth of the phase coherence is suppressed. The controllability of the dissipation is highlighted by quenching the dissipation, providing a novel method for investigating a quantum many-body state and its nonequilibrium dynamics.

13.
Nat Commun ; 7: 11341, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27094083

RESUMO

A system of ultracold atoms in an optical lattice has been regarded as an ideal quantum simulator for a Hubbard model with extremely high controllability of the system parameters. While making use of the controllability, a comprehensive measurement across the weakly to strongly interacting regimes in the Hubbard model to discuss the quantum many-body state is still limited. Here we observe a great change in the excitation energy spectra across the two regimes in an atomic Bose-Hubbard system by using a spectroscopic technique, which can resolve the site occupancy in the lattice. By quantitatively comparing the observed spectra and numerical simulations based on sum rule relations and a binary fluid treatment under a finite temperature Gutzwiller approximation, we show that the spectra reflect the coexistence of a delocalized superfluid state and a localized insulating state across the two regimes.

14.
Phys Rev Lett ; 116(4): 043202, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26871328

RESUMO

We reveal the existence of high-density Feshbach resonances in the collision between the ground and metastable states of ^{171}Yb and coherently produce the associated Feshbach molecules by photoassociation. The extremely small transition rate is overcome by the enhanced Franck-Condon factor of the weakly bound Feshbach molecule, allowing us to observe Rabi oscillations with long decay time between an atom pair and a molecule in an optical lattice. We also perform the precision measurement of the binding energies, which characterizes the observed resonances. The ultranarrow photoassociation will be a basis for practical implementation of optical Feshbach resonances.

15.
Sci Adv ; 1(10): e1500854, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26665167

RESUMO

Although kinetic energy of a massive particle generally has quadratic dependence on its momentum, a flat, dispersionless energy band is realized in crystals with specific lattice structures. Such macroscopic degeneracy causes the emergence of localized eigenstates and has been a key concept in the context of itinerant ferromagnetism. We report the realization of a "Lieb lattice" configuration with an optical lattice, which has a flat energy band as the first excited state. Our optical lattice potential has various degrees of freedom in its manipulation, which enables coherent transfer of a Bose-Einstein condensate into the flat band. In addition to measuring lifetime of the flat band population for different tight-binding parameters, we investigate the inter-sublattice dynamics of the system by projecting the sublattice population onto the band population. This measurement clearly shows the formation of the localized state with the specific sublattice decoupled in the flat band, and even detects the presence of flat-band breaking perturbations, resulting in the delocalization. Our results will open up the possibilities of exploring the physics of flat bands with a highly controllable quantum system.

16.
Phys Rev Lett ; 110(16): 163602, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23679601

RESUMO

We demonstrate unconditional quantum-noise suppression in a collective spin system via feedback control based on quantum nondemolition measurement. We perform shot-noise limited collective spin measurements on an ensemble of 3.7×10(5) laser-cooled (171)Yb atoms in their spin-1/2 ground states. Correlation between two sequential quantum nondemolition measurements indicates -0.80(-0.12)(+0.11) dB quantum-noise suppression in a conditional manner. Our feedback control successfully converts the conditional quantum-noise suppression into the unconditional one without significant loss of the noise reduction level.

17.
Phys Rev Lett ; 110(17): 173201, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679722

RESUMO

We observe magnetic Feshbach resonances in a collision between the ground and metastable states of two-electron atoms of ytterbium (Yb). We measure the on-site interaction of doubly occupied sites of an atomic Mott-insulator state in a three-dimensional optical lattice as a collisional frequency shift in a high-resolution laser spectroscopy. The observed spectra are well fitted by a simple theoretical formula, in which two particles with an s-wave contact interaction are confined in a harmonic trap. This analysis reveals a wide variation of the interaction with a resonance behavior around a magnetic field of about 1.1 G for the energetically lowest magnetic sublevel of 170Yb, as well as around 360 mG for the energetically highest magnetic sublevel of 174Yb. The observed Feshbach resonance can only be induced by an anisotropic interatomic interaction. This scheme will open the door to a variety of studies using two-electron atoms with tunable interaction.

18.
Phys Rev Lett ; 108(17): 173002, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22680859

RESUMO

We report the successful production of subradiant states of a two-atom system in a three-dimensional optical lattice starting from doubly occupied sites in a Mott insulator phase of a quantum gas of atomic ytterbium. We can selectively produce either a subradiant 1(g) state or a superradiant 0(u) state by choosing the excitation laser frequency. The inherent weak excitation rate for the subradiant 1(g) state is overcome by the increased atomic density due to the tight confinement in a three-dimensional optical lattice. Our experimental measurements of binding energies, linewidth, and Zeeman shift confirm the observation of subradiant levels of the 1(g) state of the Yb(2) molecule.

19.
J Phys Chem Lett ; 3(16): 2275-80, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-26295783

RESUMO

Small Cu and Au particles in contact with a TiC(001) surface undergo a charge polarization that makes them very active for CO2 activation and the catalytic synthesis of methanol. The binding energy of CO2 on these systems is in the range of 0.6 to 1.1 eV, much larger than those observed on surfaces or nanoparticles of Cu and Au. Thus, in spite of the poor CO2 hydrogenation performance of Cu(111) and Au(111), the Cu/TiC(001) and Au/TiC(001) systems display a catalytic activity for methanol synthesis substantially higher than that of conventional Cu/ZnO catalysts. The turnover frequencies for methanol production on Cu/TiC(001) are 170-500 times much larger than on Cu(111). The present study moves away from the typical approach of using metal/oxide catalysts for the synthesis of methanol via CO2 hydrogenation. This work shows that metal carbides can be excellent supports for enhancing the ability of noble metals to bond and activate CO2.

20.
Phys Rev Lett ; 106(20): 205304, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21668241

RESUMO

We realize simultaneous quantum degeneracy in mixtures consisting of the alkali and alkaline-earth-like atoms Li and Yb. This is accomplished within an optical trap by sympathetic cooling of the fermionic isotope 6Li with evaporatively cooled bosonic ¹74Yb and, separately, fermionic ¹7³Yb. Using cross-thermalization studies, we also measure the elastic s-wave scattering lengths of both Li-Yb combinations, |a(6Li-¹74Yb)| = 1.0 ± 0.2 nm and |a(6Li-¹7³Yb)| = 0.9 ± 0.2 nm. The equality of these lengths is found to be consistent with mass-scaling analysis. The quantum degenerate mixtures of Li and Yb, as realized here, can be the basis for creation of ultracold molecules with electron spin degrees of freedom, studies of novel Efimov trimers, and impurity probes of superfluid systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...