Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microorg Control ; 28(3): 123-128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37866894

RESUMO

Clavibacter michiganensis, a gram-positive actinomycete, is a major seed-borne tomato pathogen. We investigated the inactivation efficacy of low-pressure plasma treatment against C. michiganensis inoculated on tomato seeds by placing them on a mesh sheet above the bottom dielectric glass plate. The 2- and 5-minute plasma treatment reduced C. michiganensis populations on the tomato seeds by 0.8 and 1.8 log cfu/seed, respectively. The reduction rates were similar to those of C. michiganensis on shirona (cruciferous) seeds, which have different shapes and surface structures. In contrast, the inactivation of C. michiganensis cells using plasma was more difficult than that of X. campestris cells. Additionally, it was found that placing seeds on a mesh sheet laid on the dielectric glass plate was remarkably effective in inactivating the pathogens on tomato seeds. Since the tomato seeds were susceptible to damage from plasma treatment, methods to reduce its damage need to be investigated.


Assuntos
Actinobacteria , Micrococcaceae , Solanum lycopersicum , Sementes
2.
Biocontrol Sci ; 21(1): 37-43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27009508

RESUMO

The aim of this study was to investigate the effect of low-pressure plasma treatment on seed disinfection and the possible mechanisms underlying this effect. Seed-borne disease refers to plant diseases that are transmitted by seeds; seed disinfection is an important technique for prevention of such diseases. In this study, the effectiveness of low-pressure plasma treatment in the inactivation of the seed-borne plant pathogenic bacterium, Xanthomonas campestris, inoculated on cruciferous seeds, was evaluated. The highest inactivation effect was observed when the treatment voltage and argon gas flow rate were 5.5 kV and 0.5 L/min, respectively. The viable cell number of X. campestris was 6.6 log cfu/seed before plasma treatment, and decreased by 3.9 log after 5 min of treatment and by 6.6 log after 40 min. Ethidium monoazide treatment and quantitative real-time PCR results indicated that both the cell membrane and target DNA region were damaged following 5 min of plasma treatment. Although both heat and ozone were generated during the plasma treatment, the contribution of both factors to the inactivation of X. campestris was small by itself in our low-pressure plasma system. Overall, we have shown that our low-pressure plasma system has great applicability to controlling plant pathogenic bacterium contamination of seeds.


Assuntos
Desinfecção , Gases em Plasma , Pressão , Sementes/microbiologia , Xanthomonas campestris , Membrana Celular , Dano ao DNA , Desinfecção/métodos , Temperatura Alta , Viabilidade Microbiana , Ozônio
3.
Biocontrol Sci ; 19(2): 99-102, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24975415

RESUMO

Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.


Assuntos
Brassica/efeitos dos fármacos , Desinfecção/métodos , Gases em Plasma/farmacologia , Rhizoctonia/efeitos dos fármacos , Sementes/efeitos dos fármacos , Brassica/crescimento & desenvolvimento , Brassica/microbiologia , Desinfecção/instrumentação , Germinação/efeitos dos fármacos , Pressão , Rhizoctonia/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Temperatura , Fatores de Tempo
4.
PLoS One ; 7(3): e33800, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479445

RESUMO

Bryophytes, or mosses, are considered the most maintenance-free materials for roof greening. Racomitrium species are most often used due to their high tolerance to desiccation. Because they grow slowly, a technology for forcing their growth is desired. We succeeded in the efficient production of R. japonicum in liquid culture. The structure of the microbial community is crucial to stabilize the culture. A culture-independent technique revealed that the cultures contain methylotrophic bacteria. Using yeast cells that fluoresce in the presence of methanol, methanol emission from the moss was confirmed, suggesting that it is an important carbon and energy source for the bacteria. We isolated Methylobacterium species from the liquid culture and studied their characteristics. The isolates were able to strongly promote the growth of some mosses including R. japonicum and seed plants, but the plant-microbe combination was important, since growth promotion was not uniform across species. One of the isolates, strain 22A, was cultivated with R. japonicum in liquid culture and in a field experiment, resulting in strong growth promotion. Mutualistic symbiosis can thus be utilized for industrial moss production.


Assuntos
Briófitas/crescimento & desenvolvimento , Briófitas/metabolismo , Metanol/metabolismo , Methylobacterium/crescimento & desenvolvimento , Methylobacterium/metabolismo , Simbiose , Arabidopsis/crescimento & desenvolvimento , Nicotiana/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...