Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 12(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557279

RESUMO

Along the maternal-fetal-neonatal axis, one of the problems relating to the maternal-neonatal axis is infant sleep problems including nighttime crying. One possible solution could be to provide the newborn with sleep-promoting ingredients through breast milk or formula. So far, it has been reported that L-ornithine has a sleep-related effect. Therefore, we investigated the effect of dietary L-ornithine on maternal mouse plasma and milk L-ornithine levels in Experiment 1. In Experiment 2, a single dose of L-ornithine was applied to know the time-course changes in plasma, mammary gland and milk L-ornithine levels. Experiment 3 was conducted to confirm sleep behavior as well as changes in polyamine levels in milk. L-Ornithine levels in maternal plasma significantly increased by both dietary regimen and single oral administration in Experiments 1 and 2. Both L-ornithine treatments also increased its levels in milk, although not to a concentration as high as in plasma. In Experiment 3, the level of polyamines, which are metabolized from L-ornithine, did not significantly differ after L-ornithine administration. In sleep-like behavior observations, the average concentration of L-ornithine in milk did not increase the sleep-like behavior of mouse pups. However, more concentrated L-ornithine solutions can significantly increase sleep-like behavior. These results revealed that even if mothers ingested L-ornithine to increase L-ornithine levels in breast milk, it is difficult to promote sleep in newborns. Because it is difficult to raise L-ornithine in breast milk to sleep-inducing levels, L-ornithine added formula may partially improve infant sleep and has the potential for preventing infant sleep problems such as nighttime crying.

2.
J Vet Med Sci ; 82(3): 307-313, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31932535

RESUMO

D-Amino acids exert various physiological functions and are widely present in animals. However, they are absorbed to a lesser extent than L-amino acids. Little is known about D-arginine (D-Arg); however, its isomer L-Arg serves as a substrate for several metabolites and exhibits various functions including promotion of growth hormone secretion. Milk is the only nutrient source for infants; it plays an important role during their initial growth and brain development. No studies have evaluated the availability of D-Arg in the brain and milk in mammals. Here, we have studied the differential availability of orally administered D- and L-Arg in the brain and milk using ICR mice. Our results revealed that without D-Arg administration, D-Arg was undetectable in both plasma and brain samples. However, the plasma D-Arg was about twice the concentration of L-Arg post administration of the same. In the cerebral cortex and hypothalamus, L-Arg concentration remained almost constant for over period of 90 min after L-Arg treatment. Nevertheless, the L-Arg concentration decreased after D-Arg administration with time compared to the case post L-Arg administration. Contrastingly, D-Arg level sharply increased at both the brain regions with time after D-Arg treatment. Furthermore, L-Arg concentration in the milk hardly increased after L-Arg administration. Interestingly, oral administration of D-Arg showed efficient enrichment of D-Arg in milk, compared with L-Arg. Thus, our results imply that D-Arg may be available for brain development and infant nourishment through milk as an oral drug and/or nutrient supplement.


Assuntos
Arginina/química , Química Encefálica , Leite/química , Administração Oral , Animais , Arginina/administração & dosagem , Arginina/sangue , Feminino , Masculino , Camundongos Endogâmicos ICR , Estereoisomerismo
3.
J Vet Med Sci ; 80(2): 235-241, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29269705

RESUMO

The growth of offspring is affected not only by the protein in maternal milk but also by the free amino acids (FAAs) contained in it. L-Serine (L-Ser) is known as an important FAA for the development of the central nervous system and behavioral activity. However, it is not clear whether L-Ser is transported into the pool of FAAs contained in milk and thereby affects the growth of offspring. Using mice, the current study investigated the effects of dietary L-Ser during pregnancy and lactation on milk and plasma FAA composition, as well as on growth, behavior, and plasma FAAs of offspring. Dietary L-Ser did not significantly affect the maternal, anxiety-like, or cognitive behaviors of either the dam or the offspring. The FAA composition notably differed between plasma and milk in dams. In milk, dietary L-Ser increased free L-Ser levels, while glutamic acid, L-alanine, D-alanine and taurine levels were decreased. The body weight of the offspring was lowered by dietary L-Ser. The concentrations of plasma FAAs in 13-day-old offspring (fed only milk) were not altered, but 20-day-old offspring (fed both milk and parental diet) showed higher plasma L-Ser and D-Ser concentrations as a result of the dietary L-Ser treatment. In conclusion, the present study found that dietary L-Ser transported easily from maternal plasma to milk and that dietary L-Ser treatment could change the FAA composition of milk, but that an enhanced level of L-Ser in milk did not enhance the plasma L-Ser level in the offspring.


Assuntos
Aminoácidos/análise , Leite/química , Serina/farmacologia , Aminoácidos/sangue , Animais , Animais Recém-Nascidos/sangue , Animais Recém-Nascidos/crescimento & desenvolvimento , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Dieta , Feminino , Lactação/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...