Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Med Dosim ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38824052

RESUMO

Mayo Clinic Florida will initially open with the capability to treat with a single horizontal port for carbon ion therapy. Carbon ion therapy is traditionally done using a multi fixed port treatment approach. In this study, for nine treatment sites, clinically approved treatment plan of Osaka Heavy Ion Therapy Center was compared to a treatment plan using only a horizontal port. The treatment sites evaluated in this study were prostate cancer, pancreatic cancer, cervical cancer, recurrent rectal cancer, liver cancer, head and neck cancer, bone cancer (sarcoma and chordoma), and lung cancer. As expected, the prostate plans are identical and are only included for completeness. The DVH results for the pancreas and cervical cancer were very similar. The results for recurrent rectal, head and neck, sarcoma, chordoma, and lung cancer indicate that a single horizontal port with couch roll and yaw will accommodate certain medial targets but will be challenging to treat for laterally located targets without creative mitigations.

2.
Sci Rep ; 14(1): 11574, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773165

RESUMO

The current monochromatic beam mode (i.e., uHDR irradiation mode) of the scanned carbon-ion beam lacks a dedicated dose monitor, making the beam control challenging. We developed and characterized a dedicated dose monitor for uHDR-scanned carbon-ion beams. Furthermore, a simple measurable dose rate (dose rate per spot (DRspot)) was suggested by using the developed dose monitor and experimentally validating quantities relevant to the uHDR scanned carbon-ion beam. A large plane-parallel ionization chamber (IC) with a smaller electrode spacing was used to reduce uHDR recombination effects, and a dedicated operational amplifier was manufactured for the uHDR-scanned carbon-ion beam. The dose linearity of the IC was within ± 1% in the range of 1.8-12.3 Gy. The spatial inhomogeneity of the dose response of the IC was ± 0.38% inside the ± 40-mm detector area, and a systematic deviation of approximately 2% was measured at the edge of the detector. uHDR irradiation with beam scanning was tested and verified for different doses at the corresponding dose rates (in terms of both the average dose rate and DRspot). We confirmed that the dose monitor can highlight the characteristics (i.e., dose, dose rate, and dose profile) of uHDR-scanned carbon-ion beams at several dose levels in the monochromatic beam mode.

3.
Med Phys ; 51(3): 2239-2250, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37877590

RESUMO

BACKGROUND: Using the pencil beam raster scanning method employed at most carbon beam treatment facilities, spots can be moved without interrupting the beam, allowing for the delivery of a dose between spots (move dose). This technique is also known as Dose-Driven-Continuous-Scanning (DDCS). To minimize its impact on HIMAK patient dosimetry, there's an upper limit to the move dose. Spots within a layer are grouped into sets, or "break points," allowing continuous irradiation. The beam is turned off when transitioning between sets or at the end of a treatment layer or spill. The control system beam-off is accomplished by turning off the RF Knockout (RFKO) extraction and after a brief delay the High Speed Steering Magnet (HSST) redirects the beam transport away from isocenter to a beam dump. PURPOSE: The influence of the move dose and beam on/off control on the dose distribution and irradiation time was evaluated by measurements never before reported and modelled for Hitachi Carbon DDCS. METHOD: We conducted fixed-point and scanning irradiation experiments at three different energies, both with and without breakpoints. For fixed-point irradiation, we utilized a 2D array detector and an oscilloscope to measure beam intensity over time. The oscilloscope data enabled us to confirm beam-off and beam-on timing due to breakpoints, as well as the relative timing of the RFKO signal, HSST signal, and dose monitor (DM) signals. From these measurements, we analyzed and modelled the temporal characteristics of the beam intensity. We also developed a model for the spot shape and amplitude at isocenter occurring after the beam-off signal which we called flap dose and its dependence on beam intensity. In the case of scanning irradiation, we measured move doses using the 2D array detector and compared these measurements with our model. RESULT: We observed that the most dominant time variation of the beam intensity was at 1 kHz and its harmonic frequencies. Our findings revealed that the derived beam intensity cannot reach the preset beam intensity when each spot belongs to different breakpoints. The beam-off time due to breakpoints was approximately 100 ms, while the beam rise time and fall time (tdecay ) were remarkably fast, about 10 ms and 0.2 ms, respectively. Moreover, we measured the time lag (tdelay ) of approximately 0.2 ms between the RFKO and HSST signals. Since tdelay ≈ tdecay at HIMAK then the HSST is activated after the residual beam intensity, resulting in essentially zero flap dose at isocenter from the HSST. Our measurements of the move dose demonstrated excellent agreement with the modelled move dose. CONCLUSION: We conducted the first move dose measurement for a Hitachi Carbon synchrotron, and our findings, considering beam on/off control details, indicate that Hitachi's carbon synchrotron provides a stable beam at HIMAK. Our work suggests that measuring both move dose and flap dose should be part of the commissioning process and possibly using our model in the Treatment Planning System (TPS) for new facilities with treatment delivery control systems with higher beam intensities and faster beam-off control.


Assuntos
Íons Pesados , Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Íons , Planejamento da Radioterapia Assistida por Computador/métodos , Carbono/uso terapêutico , Dosagem Radioterapêutica
4.
PLoS One ; 18(7): e0288545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37506069

RESUMO

Currently, treatment planning systems (TPSs) that can compute the intensities of intensity-modulated carbon-ion therapy (IMCT) using scanned carbon-ion beams are limited. In the present study, the computational efficacy of the newly designed IMCT algorithms was analyzed for the first time based on the mixed beam model with respect to the physical and biological doses; moreover, the validity and effectiveness of the robust radiobiological optimization were verified. A dose calculation engine was independently generated to validate a clinical dose determined in the TPS. A biological assay was performed using the HSGc-C5 cell line to validate the calculated surviving fraction (SF). Both spot control (SC) and voxel-wise worst-case scenario (WC) algorithms were employed for robust radiobiological optimization followed by their application in a Radiation Therapy Oncology Group benchmark phantom under homogeneous and heterogeneous conditions and a clinical case for range and position errors. Importantly, for the first time, both SC and WC algorithms were implemented in the integrated TPS platform that can compute the intensities of IMCT using scanned carbon-ion beams for robust radiobiological optimization. For assessing the robustness, the difference between the maximum and minimum values of a dose-volume histogram index in the examined error scenarios was considered as a robustness index. The relative biological effectiveness (RBE) determined by the independent dose calculation engine exhibited a -0.6% difference compared with the RBE defined by the TPS at the isocenter, whereas the measured and the calculated SF were similar. Regardless of the objects, compared with the conventional IMCT, the robust radiobiological optimization enhanced the sensitivity of the examined error scenarios by up to 19% for the robustness index. The computational efficacy of the novel IMCT algorithms was verified according to the mixed beam model with respect to the physical and biological doses. The robust radiobiological optimizations lowered the impact of range and position uncertainties considerably in the examined scenarios. The robustness of the WC algorithm was more enhanced compared with that of the SC algorithm. Nevertheless, the SC algorithm can be used as an alternative to the WC IMCT algorithm with respect to the computational cost.


Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Radioterapia de Intensidade Modulada , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia com Íons Pesados/métodos , Algoritmos , Carbono/uso terapêutico , Dosagem Radioterapêutica , Terapia com Prótons/métodos
5.
Phys Med ; 107: 102537, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36780791

RESUMO

[Purpose] Treatment plans for carbon ion radiotherapy (CIRT) in Japan are designed to uniformly deliver the prescribed clinical dose based on the radiosensitivity of human salivary gland (HSG) cells to the planning target volume (PTV). However, sensitivity to carbon beams varies between cell lines, that is, it should be checked that the clinical dose distribution based on the cell radiosensitivity of the treatment site is uniform within the PTV. [Methods] We modeled the linear energy transfer (LET) dependence of the linear-quadratic (LQ) coefficients specific to prostate cancer, which accounts for the majority of CIRT. This was achieved by irradiating prostate cancer cells (PC3) with X-rays from a 4 MV-Linac and carbon beams with different LETs of 11.1-214.3 keV/µm. By using the radiosensitivity of PC3 cells derived from cellular experiments, we reconstructed prostate-cancer-specific clinical dose distributions on patient computed tomography (CT). [Results] The LQ coefficient, α, of PC3 cells was larger than that of HSG cells at low (<50 keV/µm) LET and smaller at high (>50 keV/µm) LET, which was validated by cellular experiments performed on rectangular SOBPs. The reconstructed dose distribution on patient CT was sloped when 1 fraction incident from the one side of the patient was considered, but remained uniform from the sum of 12 fractions of the left-right opposing beams (as is used in clinical practice). [Conclusion] Our study reveals the inhomogeneity of clinical doses in single-field plans calculated using the PC3 radiosensitivity data. However, this inhomogeneity is compensated by using the combination of left-right opposing beams.


Assuntos
Radioterapia com Íons Pesados , Neoplasias da Próstata , Masculino , Humanos , Células PC-3 , Neoplasias da Próstata/radioterapia , Carbono , Planejamento da Radioterapia Assistida por Computador/métodos
6.
Anticancer Res ; 43(2): 581-589, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36697058

RESUMO

BACKGROUND/AIM: The focus of this report is establishing an irradiation arrangement to realize an ultra-high dose-rate (uHDR; FLASH) of scanned carbon-ion irradiation possible with a compact commonly available medical synchrotron. MATERIALS AND METHODS: Following adjustments to the operation it became possible to extract ≥1.0×109 carbon ions at 208.3 MeV/u (86 mm in range) per 100 ms. The design takes the utmost care to prevent damage to monitors, particularly in the nozzle, achieved by the uHDR beam not passing through this part of the apparatus. Doses were adjusted by extraction times, using a function generator. After one scan by the carbon-ion beam it became possible to create a field within the extraction time. The Advanced Markus chamber (AMC) and Gafchromic film are then able to measure the absolute dose and field size at a plateau depth, with the operating voltage of the chamber at 400 V at the uHDR for the AMC. RESULTS: The beam scanning utilizing this uHDR irradiation could be confirmed at a dose of 6.5±0.08 Gy (±3% homogeneous) at this volume over at least 16×16 mm2 corresponding to a dose-rate of 92.3 Gy/s (±1.3%). The dose was ca. 0.7, 1.5, 2.9, and 5.4 Gy depending on dose-rate and field size, with the rate of killed cells increasing with the irradiation dose. CONCLUSION: The compact medical synchrotron achieved FLASH dose-rates of >40 Gy/s at different dose levels and in useful field sizes for research with the apparatus and arrangement developed here.


Assuntos
Radioterapia com Íons Pesados , Síncrotrons , Humanos , Carbono , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica , Radiometria
7.
Phys Med Biol ; 67(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327456

RESUMO

Objective. Dosimetric commissioning of treatment planning systems (TPS) focuses on validating the agreement of the physical dose with experimental data. For carbon-ion radiotherapy, the commissioning of the relative biological effectiveness (RBE) is necessary to predict the clinical outcome based on the radiation quality of the mixed radiation field. In this study, we proposed a approach for RBE commissioning using Monte Carlo (MC) simulations, which was further strengthen by RBE validation based on linear energy transfer (LET) measurements.Approach. First, we tuned the MC simulation based on the results of dosimetric experiments including the beam ranges, beam sizes, and MU calibrations. Furthermore, we compared simulated results to measured depth- and radial-LET distributions of the 430 MeV u-1carbon-ion spot beam with a 1.5 mm2, 36µm thick silicon detector. The measured dose-averaged LET (LETd) and RBE were compared with the simulated results. The RBE was calculated based on the mixed beam model with linear-quadratic parameters depending on the LET. Finally, TPS-calculated clinical dose profiles were validated through the tuned MC-based calculations.Main results. A 10 keVµm-1and 0.15 agreement for LETdand RBE, respectively, were found between simulation and measurement results obtained for a 2σlateral size of 430 MeV u-1carbon-ion spot beam in water. These results suggested that the tuned MC simulation can be used with acceptable precision for the RBE and LET calculations of carbon-ion spot beam within the clinical energy range. For physical and clinical doses, the TPS- and MC-based calculations showed good agreements within 1.0% at the centre of the spread-out Bragg peaks.Significance. The tuned MC simulation can accurately reproduce the actual carbon-ion beams, and it can be used to validate the physical and clinical dose distributions calculated by TPS. Moreover, the MC simulation can be used for dosimetric commissioning, including clinical doses, without LET measurements.


Assuntos
Transferência Linear de Energia , Terapia com Prótons , Método de Monte Carlo , Eficiência Biológica Relativa , Radiometria , Terapia com Prótons/métodos , Carbono/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos
8.
PLoS One ; 17(5): e0268087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35536852

RESUMO

In this study, we report our experience in commissioning a commercial treatment planning system (TPS) for fast-raster scanning of carbon-ion beams. This TPS uses an analytical dose calculation algorithm, a pencil-beam model with a triple Gaussian form for the lateral-dose distribution, and a beam splitting algorithm to consider lateral heterogeneity in a medium. We adopted the mixed beam model as the relative biological effectiveness (RBE) model for calculating the RBE values of the scanned carbon-ion beam. To validate the modeled physical dose, we compared the calculations with measurements of various relevant quantities as functions of the field size, range and width of the spread-out Bragg peak (SOBP), and depth-dose and lateral-dose profiles for a 6-mm SOBP in water. To model the biological dose, we compared the RBE calculated with the newly developed TPS to the RBE calculated with a previously validated TPS that is in clinical use and uses the same RBE model concept. We also performed patient-specific measurements to validate the dose model in clinical situations. The physical beam model reproduces the measured absolute dose at the center of the SOBP as a function of field size, range, and SOBP width and reproduces the dose profiles for a 6-mm SOBP in water. However, the profiles calculated for a heterogeneous phantom have some limitations in predicting the carbon-ion-beam dose, although the biological doses agreed well with the values calculated by the validated TPS. Using this dose model for fast-raster scanning, we successfully treated more than 900 patients from October 2018 to October 2020, with an acceptable agreement between the TPS-calculated and measured dose distributions. We conclude that the newly developed TPS can be used clinically with the understanding that it has limited accuracies for heterogeneous media.


Assuntos
Terapia com Prótons , Carbono , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa , Água
9.
Med Phys ; 49(2): 801-812, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34894413

RESUMO

PURPOSE: Herein, we report the methods and results of the Hitachi carbon-ion therapy facility commissioning to determine the optimum values of the magnitude of movement and repaint number in respiratory-gated irradiation. METHODS: A virtual-cylinder target was created using the treatment-planning system (VQA Plan), and measurements were performed to study the effects of respiratory movements using a two-dimensional ionization-chamber array detector and a phantom with movable wedge and stage. For simulations, we selected a 10 × 10 × 10 cm3 cubic irradiation pattern with a uniform physical dose and two actual cases of liver-cancer treatments, whose prescribed doses were 60 Gy(RBE)/4 fraction (Case 1) and 60 Gy(RBE)/12 fraction (Case 2). We employed two types of repainting methods, one produced by the algorithm of VQA Plan (VQA algorithm) and the other by ideal repainting. The latter completely repeats all spots with set number of repaintings. We performed flatness calculations and gamma analysis to evaluate the effects of each condition. RESULTS: From the measurements, the gamma passing rates for which the criteria were 3%/3 mm exceeded 95% for displacements in the head-to-tail direction if the repaint number was greater than 3 and the magnitude of the residual motions was less than 5.0 mm. In simulations with the cubic irradiation pattern, the gamma passing rates (with criteria of 2%/2 mm) exceeded 95% when the magnitude of the residual motions was 3.0 mm and the repaint number was greater than 3. When the repaint number was set to 4 in the VQA with the actual liver cases, the flatness results for Case 2 was minimal. For ideal repainting, the flatness results for all ports fell within ∼3.0% even when the magnitude of the residual motions was 5.0 mm if the repaint number was 6. However, the flatness was less than 3.0% for almost all ports if the magnitude of the residual motions was less than 3.0 mm with a repaint number of 4 in case of both types of repaint methods. CONCLUSIONS: At our facility, carbon-ion radiotherapy can be provided safely to a moving target with residual motions of 3.0 mm magnitude and with a repaint number of 4.


Assuntos
Radioterapia com Íons Pesados , Planejamento da Radioterapia Assistida por Computador , Carbono , Imagens de Fantasmas , Dosagem Radioterapêutica
10.
J Appl Clin Med Phys ; 22(9): 242-251, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34339590

RESUMO

PURPOSE: Carbon ion radiotherapy for prostate cancer was performed using two fine needle Gold Anchor (GA) markers for patient position verification in Osaka Heavy Ion Medical Accelerator in Kansai (Osaka HIMAK). The present study examined treatment plans for prostate cases using beam-specific planning target volume (bsPTV) based on the effect of the markers on dose distribution and analysis of target movements. MATERIALS AND METHODS: Gafchromic EBT3 film was used to measure dose perturbations caused by markers. First, the relationships between the irradiated film density and absolute dose with different linear energy transfer distributions within a spread-out Bragg peak (SOBP) were confirmed. Then, to derive the effect of markers, two types of markers, including GA, were placed at the proximal, center, and distal depths within the same SOBP, and dose distributions behind the markers were measured using the films. The amount of internal motion of prostate was derived from irradiation results and analyzed to determine the margins of the bsPTV. RESULTS: The linearity of the film densities against absolute doses was constant within the SOBP and the amount of dose perturbations caused by the markers was quantitatively estimated from the film densities. The dose perturbation close behind the markers was smallest (<10% among depths within the SOBP regardless of types of markers) and increased with depth. The effect of two types of GAs on dose distributions was small and could be ignored in the treatment planning. Based on the analysis results of internal motions of prostate, required margins of the bsPTV were found to be 8, 7, and 7 mm in left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions, respectively. CONCLUSION: We evaluated the dose reductions caused by markers and determined the margins of the bsPTV, which was applied to the treatment using fiducial markers, using the analysis results of prostate movements.


Assuntos
Radioterapia com Íons Pesados , Íons Pesados , Neoplasias da Próstata , Marcadores Fiduciais , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
11.
J Appl Clin Med Phys ; 22(7): 77-92, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33998157

RESUMO

We have developed physical and biological beam modeling for carbon scanning therapy at the Osaka Heavy Ion Therapy Center (Osaka HIMAK). Carbon beam scanning irradiation is based on continuous carbon beam scanning, which adopts hybrid energy changes using both accelerator energy changes and binary range shifters in the nozzles. The physical dose calculation is based on a triple Gaussian pencil-beam algorithm, and we thus developed a beam modeling method using dose measurements and Monte Carlo simulation for the triple Gaussian. We exploited a biological model based on a conventional linear-quadratic (LQ) model and the photon equivalent dose, without considering the dose dependency of the relative biological effectiveness (RBE), to fully comply with the carbon passive dose distribution using a ridge filter. We extended a passive ridge-filter design method, in which carbon and helium LQ parameters are applied to carbon and fragment isotopes, respectively, to carbon scanning treatment. We then obtained radiation quality data, such as the linear energy transfer (LET) and LQ parameters, by Monte Carlo simulation. The physical dose was verified to agree with measurements to within ±2% for various patterns of volume irradiation. Furthermore, the RBE in the middle of a spread-out Bragg peak (SOBP) reproduced that from passive dose distribution results to within ±1.5%. The developed carbon beam modeling and dose calculation program was successfully applied in clinical use at Osaka HIMAK.


Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Carbono , Humanos , Transferência Linear de Energia , Método de Monte Carlo , Eficiência Biológica Relativa
12.
J Radiat Res ; 59(4): 442-445, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850845

RESUMO

Flattening filter-free (FFF) photon beams minimize the intrafraction motion of tumors, and this feature is useful in pulmonary malignancies, such as non-small-cell lung cancer (NSCLC). However, the radiobiological effects of such beams on NSCLC cells, which are often treated with stereotactic body radiotherapy (SBRT), have not been investigated sufficiently. Although cell motility may be promoted by photon beams with a low dose, the relationship between cell motility and the dose rate of photon beams has not been evaluated. The purpose of this study was to evaluate the radiobiological effects of FFF photon beams on cell survival and motility in NSCLC. A human lung cancer cell line (A549) was irradiated with conventional flattening filter (FF) and FFF photon beams at dose rates of 300 (FF), 500 and 2000 MU/min (FFF). While cell survival was estimated using the colony formation assay, cell motility was evaluated using the Boyden chamber and Matrigel invasion assays. FFF photon beams with a high dose rate neither affected the survival of A549 cells nor caused any significant difference in their motility. On the other hand, high-dose irradiation reduced cell survival and motility regardless of the dose rate. Photon beams with a high dose rate used for radiation therapy are suitable for SBRT from the standpoint of both cell survival and motility, in addition to their physical characteristics.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Fótons , Radiobiologia , Células A549 , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Neoplasias Pulmonares/patologia , Invasividade Neoplásica
13.
Radiat Oncol ; 13(1): 30, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29471859

RESUMO

BACKGROUND: The incomplete repair (IR) model expresses the cell repair effect from radiation-induced damage over time, which is given little consideration in actual treatment planning. By incorporating the IR model into the normal tissue complication probability (NTCP), the accuracy and safety of treatment plan evaluations concerning the effect of repair can be improved. This study aims to evaluate the impact of incorporating the IR model into the NTCP by varying time-related factors such as the repair half-time (T1/2) and the junction-shift sc3hedule in craniospinal irradiation (CSI). METHODS: CSI was planned retrospectively, and the NTCP of the spinal cord was calculated with the IR model for values of T1/2 from 1 to 10 h. The NTCP in the case of changing the junction-shift schedule was also examined in the same manner. RESULTS: The NTCP with the IR model increased with increasing T1/2, which is prominent for the larger T1/2. By changing the junction-shift schedule, the NTCP with the IR model decreased when adjacent fields overlapped. CONCLUSIONS: The IR model is a valuable addition to treatment planning because it enables the NTCP to be evaluated including the effect of repair and differences in scheduling to be reflected in the NTCP. However, these are largely dependent on the value of the T1/2.


Assuntos
Algoritmos , Neoplasias Encefálicas/radioterapia , Lesões por Radiação/prevenção & controle , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Neoplasias da Medula Espinal/radioterapia , Seguimentos , Humanos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Fatores de Tempo
14.
Anticancer Res ; 38(2): 945-954, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29374726

RESUMO

BACKGROUND: This study aimed to assess the need to consider microscopic invasion in terms of treatment planning in stereotactic body radiation therapy (SBRT) for hepatocellular carcinoma and elucidate the appropriate clinical target volume (CTV) margin. PATIENTS AND METHODS: A total of 121 patients (with 146 liver tumors) who underwent SBRT between July 2007 and August 2016 were analyzed, regarding overall survival and local control (LC). RESULTS: The 2- and 5-year LC rates were 91.5% and 89.8%, respectively. Planning target volume (PTV) margin <8 mm was associated with poor LC. Of the 77 patients with PTV margin of <8 mm, age <75 years was associated with poor LC, while alpha-fetoprotein (AFP) ≤20 ng/ml was associated with good LC. CONCLUSION: In patients with high AFP levels, there is a possibility of microscopic invasion around the tumor, suggesting that LC may be improved by adding an additional clinical target volume margin to the gross tumor volume.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Neoplasia Residual/patologia , Radiocirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/cirurgia , Feminino , Seguimentos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasia Residual/metabolismo , Neoplasia Residual/cirurgia , Prognóstico , Dosagem Radioterapêutica , Taxa de Sobrevida , alfa-Fetoproteínas/metabolismo
15.
Radiol Phys Technol ; 10(4): 387-408, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29159536

RESUMO

The physics of epi-thermal neutrons in the human body is discussed in the effort to clarify the nature of the unique radiologic properties of boron neutron capture therapy (BNCT). This discussion leads to the computational method of Monte Carlo simulation in BNCT. The method is discussed through two examples based on model phantoms. The physics is kept at an introductory level in the discussion in this tutorial review.


Assuntos
Terapia por Captura de Nêutron de Boro/instrumentação , Imagens de Fantasmas , Física , Humanos
16.
Igaku Butsuri ; 36(4): 207-214, 2017.
Artigo em Japonês | MEDLINE | ID: mdl-28701662

RESUMO

To foster medical physicists, we introduce the achievement we made since 2011 under the national research project of the Japan Society for the Promotion of Science (JSPS) Core-to-Core program; 'Forming Research and Educational Hubs of Medical Physics.' On this basis and under the JSPS program, we promoted research and educational exchange with Indiana University (IU) in USA, University of Groningen (The UG) in the Netherland and other cooperating institutions such as University of Minnesota (UM).A total of 23 students and researchers were sent. UG accepted the most among three institutions. In turn, 12 foreign researchers including post-doctor fellows came to Japan for academic seminars or educational lectures.Fifteen international seminars were held; 8 in Japan, 4 in USA, and 3 in the Netherland.Lots of achievement were made through these activities in 5 years. Total of 23 research topics at the international conferences were presented. Total of 12 articles were published in international journals.This program clearly promoted the establishment of international collaboration, and many young researchers and graduate students were exchanged and collaborated with foreign researchers.


Assuntos
Pesquisa Biomédica/educação , Física/educação , Sociedades Científicas , Cooperação Internacional , Japão
17.
Br J Radiol ; 90(1072): 20160815, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28256908

RESUMO

OBJECTIVE: The volume of targets to which a high radiation dose can be delivered is limited for pancreatic radiotherapy. We assessed changes in movements of pancreatic tumours between simulation and treatment and determined compensatory margins. METHODS: For 23 patients, differences in implanted fiducial marker motion magnitude (MMM) and mean marker position (MMP) between four-dimensional CT and cone-beam CT were measured. Subsequently, residual uncertainty was simulated after no action level (NAL) and extended no action level (eNAL) protocols were adopted. RESULTS: With no correction, respective 95th percentile of MMM were 4.5 mm, 6.2 mm and 16.0 mm and systematic (random) errors of MMP were 2.8 mm (3.3 mm), 3.2 mm (2.0 mm) and 5.9 mm (4.0 mm) in the left-right (L-R), anteroposterior (A-P) and superoinferior (S-I) directions, so that large margins were required (L-R, 10.5 mm; A-P, 11.7 mm; and S-I, 24.8 mm). NAL reduced systematic errors of MMP, but resultant margins remained large (L-R, 8.0 mm; A-P, 9.6 mm; and S-I, 18.1 mm). eNAL compensated for time trends and obtained minimal margins (L-R, 6.7 mm; A-P, 6.7 mm; and S-I, 15.2 mm). CONCLUSION: Motion magnitude and position of pancreatic tumours during simulation are frequently not representative of that during treatment. eNAL compensated for systematic interfractional position change and would be a practical approach for improving targeting accuracy. Advances in knowledge: Considerably large margins, especially in the S-I direction, were required to compensate for intrafractional motion and interfractional position changes of the pancreatic tumour. An application of eNAL was an effective strategy to diminish these margins.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Marcadores Fiduciais , Neoplasias Pancreáticas/diagnóstico por imagem , Feminino , Tomografia Computadorizada Quadridimensional , Humanos , Masculino , Movimento (Física) , Pâncreas/diagnóstico por imagem , Reprodutibilidade dos Testes
18.
J Radiat Res ; 58(5): 685-692, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339918

RESUMO

We investigated whether methods conventionally used to evaluate patient-specific QA in volumetric-modulated arc therapy (VMAT) for intracranial tumors detect clinically relevant dosimetric errors. VMAT plans with coplanar arcs were designed for 37 intracranial tumors. Dosimetric accuracy was validated by using a 3D array detector. Dose deviations between the measured and planned doses were evaluated by gamma analysis. In addition, modulation complexity score for VMAT (MCSv) for each plan was calculated. Three-dimensional dose distributions in patient anatomy were reconstructed using 3DVH software, and clinical deviations in dosimetric parameters between the 3DVH doses and planned doses were calculated. The gamma passing rate (GPR)/MCSv and the clinical dose deviation were evaluated using Pearson's correlation coefficient. Significant correlation (P < 0.05) between the clinical dose deviation and GPR was observed with both the 3%/3 mm and 2%/2 mm criteria in clinical target volume (D99), brain (D2), brainstem (D2) and chiasm (D2), albeit that the correlations were not 'strong' (0.38 < |r| < 0.54). The maximum dose deviations of brainstem were up to 4.9 Gy and 2.9 Gy for Dmax and D%, respectively in the case of high GPR (98.2% with 3%/3 mm criteria). Regarding MCSv, none of the evaluated organs showed a significant correlation with clinical dose deviation, and correlations were 'weak' or absent (0.01 < |r| < 0.21). The use of high GPR and MCSv values does not always detect dosimetric errors in a patient. Therefore, in-depth analysis with the DVH for patient-specific QA is considered to be preferable for guaranteeing safe dose delivery.


Assuntos
Neoplasias Encefálicas/radioterapia , Raios gama , Radioterapia de Intensidade Modulada , Relação Dose-Resposta a Droga , Humanos
19.
Int J Radiat Oncol Biol Phys ; 96(3): 661-9, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27681763

RESUMO

PURPOSE: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). METHODS AND MATERIALS: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D2 - D98, where D2 and D98 are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. RESULTS: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. CONCLUSIONS: In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and organ-at-risk dose parameters.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Órgãos em Risco/efeitos da radiação , Terapia com Prótons/métodos , Erros de Configuração em Radioterapia/prevenção & controle , Mecânica Respiratória , Carcinoma Pulmonar de Células não Pequenas/patologia , Relação Dose-Resposta à Radiação , Humanos , Neoplasias Pulmonares/patologia , Movimento (Física) , Estadiamento de Neoplasias , Posicionamento do Paciente/métodos , Exposição à Radiação/análise , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento , Carga Tumoral/efeitos da radiação
20.
J Radiat Res ; 57(1): 91-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26419645

RESUMO

The aim of the this study was to validate the use of an average intensity projection (AIP) for volumetric-modulated arc therapy for stereotactic body radiation therapy (VMAT-SBRT) planning for a moving lung tumor located near the diaphragm. VMAT-SBRT plans were created using AIPs reconstructed from 10 phases of 4DCT images that were acquired with a target phantom moving with amplitudes of 5, 10, 20 and 30 mm. To generate a 4D dose distribution, the static dose for each phase was recalculated and the doses were accumulated by using the phantom position known for each phase. For 10 patients with lung tumors, a deformable registration was used to generate 4D dose distributions. Doses to the target volume obtained from the AIP plan and the 4D plan were compared, as were the doses obtained from each plan to the organs at risk (OARs). In both phantom and clinical study, dose discrepancies for all parameters of the dose volume (D(min), D(99), D(max), D(1) and D(mean)) to the target were <3%. The discrepancies of D(max) for spinal cord, esophagus and heart were <1 Gy, and the discrepancy of V20 for lung tissue was <1%. However, for OARs with large respiratory motion, the discrepancy of the D(max) was as much as 9.6 Gy for liver and 5.7 Gy for stomach. Thus, AIP is clinically acceptable as a planning CT image for predicting 4D dose, but doses to the OARs with large respiratory motion were underestimated with the AIP approach.


Assuntos
Diafragma/efeitos da radiação , Neoplasias Pulmonares/radioterapia , Imagens de Fantasmas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada Quadridimensional , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Dosagem Radioterapêutica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...