Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hum Genet ; 53(3): 201-209, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18160997

RESUMO

Polymorphisms of arylamine N-acetyltransferase 2 (NAT2) are reportedly associated with the risk of drug toxicities and development of various diseases. The present study examined NAT2 polymorphisms in both promoter and coding regions in the Indonesian population using PCR direct sequencing. The promoter and coding regions of NAT2 displayed 23 polymorphisms/variations, including eight new ones. Seven haplotypes in the promoter region and six haplotypes in the coding region were inferred. The haplotypes in promoter and coding regions showed limited combinations, and 13 combined haplotypes were inferred. The most frequent haplotypes were U1 (38.9%), U2 (33.5%) in the promoter region and NAT2*4 (37.3%), NAT2*6A (36.8%) in the coding region. When converted to predicted phenotypes, the studied population comprised 65.4% rapid acetylators and 35.6% slow acetylators according to bimodal distribution. According to trimodal distribution, frequencies of predicted phenotypes were 13.6, 50.8 and 35.6% for rapid, intermediate and slow acetylators, respectively. Frequencies of NAT2 alleles for the Indonesian population resembled those of other Southeast Asian populations. We also propose a new NAT2 nomenclature composed of haplotypes in the promoter region and conventional NAT2 haplotypes in the coding region, symbolized by NAT2*4.U1, NAT2*4.U2, NAT2*4.U3, NAT2*4.U5, NAT2*4.U6, NAT2*4.U7, NAT2*6A.U1, NAT2*7B.U2, NAT2*7B.U3, NAT2*5B.U1, NAT2*5B.U4, NAT2*12A.U4 and NAT2*13.U1.


Assuntos
Arilamina N-Acetiltransferase/genética , Povo Asiático/genética , Polimorfismo Genético , Regiões Promotoras Genéticas , Adolescente , Adulto , Idoso , Primers do DNA , Feminino , Humanos , Indonésia , Masculino , Pessoa de Meia-Idade , Valores de Referência , Transcrição Gênica
2.
Anal Biochem ; 364(1): 78-85, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17359929

RESUMO

A number of single nucleotide polymorphisms (SNPs) are considered to be candidate susceptibility or resistance genetic factors for multifactorial disease. Genome-wide searches for disease susceptibility regions followed by high-resolution mapping of primary genes require cost-effective and highly reliable technology. To accomplish successful and low-cost typing for candidate SNPs, new technologies must be developed. We previously reported a multiplex SNP typing method, designated the DigiTag assay, that has the potential to analyze nearly any SNP with high accuracy and reproducibility. However, the DigiTag assay requires multiple washing steps in manipulation and uses genotyping probes modified with biotin for each target SNP. Here we describe the next version of the assay, DigiTag2, which works with simple protocols and uses unmodified genotyping probes. We investigated the feasibility of the DigiTag2 assay by genotyping 96 target SNPs spanning a 610-kb region of human chromosome 5. The DigiTag2 assay is suitable for genotyping an intermediate number of SNPs (tens to hundreds of sites) with a high conversion rate (>90%), high accuracy, and low cost.


Assuntos
DNA/genética , Testes Genéticos/métodos , Polimorfismo de Nucleotídeo Único/genética , Técnicas Genéticas , Genoma Humano , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos
3.
Genetics ; 173(3): 1555-70, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16702430

RESUMO

A plausible explanation for many MHC-linked diseases is lacking. Sequencing of the MHC class I region (coding units or full contigs) in several human and nonhuman primate haplotypes allowed an analysis of single nucleotide variations (SNV) across this entire segment. This diversity was not evenly distributed. It was rather concentrated within two gene-rich clusters. These were each centered, but importantly not limited to, the antigen-presenting HLA-A and HLA-B/-C loci. Rapid evolution of MHC-I alleles, as evidenced by an unusually high number of haplotype-specific (hs) and hypervariable (hv) (which could not be traced to a single species or haplotype) SNVs within the classical MHC-I, seems to have not only hitchhiked alleles within nearby genes, but also hitchhiked deleterious mutations in these same unrelated loci. The overrepresentation of a fraction of these hvSNV (hv1SNV) along with hsSNV, as compared to those that appear to have been maintained throughout primate evolution (trans-species diversity; tsSNV; included within hv2SNV) tends to establish that the majority of the MHC polymorphism is de novo (species specific). This is most likely reminiscent of the fact that these hsSNV and hv1SNV have been selected in adaptation to the constantly evolving microbial antigenic repertoire.


Assuntos
Alelos , Evolução Molecular , Genes MHC Classe I , Predisposição Genética para Doença , Variação Genética , Primatas/genética , Animais , Sequência de Bases , Linhagem Celular , DNA/metabolismo , Haplótipos , Humanos , Macaca mulatta/genética , Macaca mulatta/imunologia , Modelos Genéticos , Dados de Sequência Molecular , Pan troglodytes/genética , Pan troglodytes/imunologia , Primatas/imunologia , Análise de Sequência de DNA
4.
Anal Biochem ; 346(2): 281-8, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16185645

RESUMO

As a consequence of Human Genome Project and single nucleotide polymorphism (SNP) discovery projects, several millions of SNPs, which include possible susceptibility SNPs for multifactorial diseases, have been revealed. Accordingly, there has been a strong drive to perform the investigation with all candidate SNPs for a certain disease without decreasing the number of analyzed SNPs. We developed DigiTag assay, which uses well-designed oligonucleotides called DNA coded numbers (DCNs) in multiplex SNP genotype analysis. During the analysis, the information of a genotype is converted to one of the DCNs in a one to one manner using oligonucleotide ligation assay (encoding). After the encoding reaction, only the DCNs regions and not the SNP specific regions are amplified using the universal primers and then SNP genotype is read out using DNA capillary arrays. DigiTag assay was found to be successful in SNP genotyping, giving a high success rate (24 of 27 SNPs) for randomly chosen SNPs. Moreover, this assay has the potential to analyze almost all kinds of the target SNPs by applying mismatch-induced probes and redesigned primer pairs at a low-cost.


Assuntos
DNA/genética , Testes Genéticos/métodos , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Técnicas de Amplificação de Ácido Nucleico/métodos
5.
Neurogenetics ; 4(3): 151-3, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12736803

RESUMO

Arylalkylamine N-acetyltransferase (AA-NAT) is a rate-limiting enzyme in melatonin hormone synthesis and participates in daily oscillations of the melatonin level. We studied the association between the AA-NAT gene and delayed sleep phase syndrome (DSPS). Results indicate that there is a significant difference in allele positivity at the single nucleotide polymorphism involved in an amino acid substitution from alanine to threonine at position 129 between patients with DSPS and healthy controls. The frequency of the 129 threonine allele is significantly higher in the patients than in the controls ( P=0.0029). The data suggest that AA-NAT could be a susceptibility gene for DSPS.


Assuntos
Arilamina N-Acetiltransferase/fisiologia , Polimorfismo de Nucleotídeo Único , Transtornos do Sono-Vigília/genética , Alelos , Motivos de Aminoácidos , Substituição de Aminoácidos , Arilamina N-Acetiltransferase/genética , Sítios de Ligação , Códon/genética , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Melatonina/biossíntese , Fosforilação , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Processamento de Proteína Pós-Traducional
6.
Immunogenetics ; 54(12): 856-61, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12671736

RESUMO

Conventional phylogenetic trees for the human leukocyte antigen (HLA)-DRB1 alleles constructed by the neighbor-joining (Saitou and Nei 1987) and UPGMA (Sneath and Sokal 1973) methods using nucleotide sequences of the DRB1 alleles suggest that DRB1*0701 may have diverged from other DRB1 alleles before the separation of the human and chimpanzee species, because of a large number of nucleotide changes in DRB1*0701 compared with any of the other DRB1 alleles. Here we show new evidence that the haplotypes centering on DRB1*0701 and DRB1*04 alleles are the most homologous. This suggests that these haplotypes have derived from the common ancestral haplotype, and that they have likely retained complete linkage disequilibrium even after the divergence of the DRB1*0701 and DRB1*04 allelic lineages. Together with the corresponding haplotype carrying chimpanzee DRB1*0701, which has a high sequence homology to HLA-DRB1*0701, these haplotypes reveal that: (1) the DRB1*04 allelic lineage may have been generated from the DRB1*0701 lineage after the separation of the human and chimpanzee species; (2) the DRB1*04 allelic lineage possibly has a higher substitution rate of DRB1 compared with pseudogene and neutral region; (3) there could be a significant difference in the substitution rate of DRB1 between the DRB1*0701 and DRB1*04 allelic lineages. Based on the difference between the present and previous results, we would like to propose that phylogenetic studies using not only nucleotide sequences of the DRB1 alleles but also haplotypes centering on the alleles should be conducted for understanding detailed phylogenetic relationships of the DRB1 alleles.


Assuntos
Evolução Molecular , Antígenos HLA-DR/genética , Pan troglodytes/genética , Pan troglodytes/imunologia , Alelos , Animais , Sequência de Bases , DNA/genética , Cadeias HLA-DRB1 , Haplótipos , Humanos , Modelos Genéticos , Filogenia , Pseudogenes , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...