Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Exp Med ; 217(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32820331

RESUMO

Pathogenic muscle-specific tyrosine kinase (MuSK)-specific IgG4 autoantibodies in autoimmune myasthenia gravis (MG) are functionally monovalent as a result of Fab-arm exchange. The development of these unique autoantibodies is not well understood. We examined MG patient-derived monoclonal autoantibodies (mAbs), their corresponding germline-encoded unmutated common ancestors (UCAs), and monovalent antigen-binding fragments (Fabs) to investigate how affinity maturation contributes to binding and immunopathology. Mature mAbs, UCA mAbs, and mature monovalent Fabs bound to MuSK and demonstrated pathogenic capacity. However, monovalent UCA Fabs bound to MuSK but did not have measurable pathogenic capacity. Affinity of the UCA Fabs for MuSK was 100-fold lower than the subnanomolar affinity of the mature Fabs. Crystal structures of two Fabs revealed how mutations acquired during affinity maturation may contribute to increased MuSK-binding affinity. These findings indicate that the autoantigen drives autoimmunity in MuSK MG through the accumulation of somatic mutations such that monovalent IgG4 Fab-arm-exchanged autoantibodies reach a high-affinity threshold required for pathogenic capacity.


Assuntos
Afinidade de Anticorpos/imunologia , Autoanticorpos/imunologia , Imunoglobulina G/imunologia , Miastenia Gravis/imunologia , Autoantígenos/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Mutação/genética , Ligação Proteica , Domínios Proteicos , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/imunologia , Receptores Colinérgicos/química , Receptores Colinérgicos/imunologia
3.
J Neuroinflammation ; 17(1): 82, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32169103

RESUMO

BACKGROUND: Sema4A is a regulator of helper T cell (Th) activation and differentiation in the priming phase, which plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS). However, the role of Sema4A in the effector phase remains elusive. We aimed to investigate the role of Sema4A at the effector phase in adoptively transferred EAE model. Clinical features and cytokine profiles of MS patients with high Sema4A levels were also examined in detail to clarify the correlation between Sema4A levels and disease activity of patients with MS. METHODS: We adoptively transferred encephalitogenic Th1 or Th17 cells to wild type (WT) or Sema4A-deficient (Sema4A KO) mice and assessed severity of symptoms and cellular infiltration within the central nervous system (CNS). In addition, we analyzed clinical and radiological features (n = 201), levels of serum IFN-γ and IL-17A (n = 86), complete remission ratio by IFN-ß (n = 38) in all of relapsing-remitting multiple sclerosis (RRMS) patients enrolled in this study. RESULTS: Sema4A KO recipient mice receiving Th17-skewed WT myelin oligodendrocyte glycoprotein (MOG)-specific encephalitogenic T cells showed a significant reduction in the clinical score compared to the WT recipient mice. However, Sema4A KO recipient mice showed similar disease activity to the WT recipient mice when transferred with Th1-skewed encephalitogenic T cells. Bone marrow chimeric study indicated that Sema4A expressed on hematopoietic cells, but not the CNS resident cells, are responsible for augmenting Th17-mediated neuroinflammation. Additionally, in contrast to comparable IFN-γ levels, IL-17A is significantly higher in RRMS patients with high Sema4A level than those with low Sema4A patients with high Sema4A levels showed earlier disease onset, more severe disease activity and IFN-ß unresponsiveness than those with low Sema4A levels. CONCLUSIONS: Sema4A is involved not only in the Th cell priming but also in the acceleration of Th17 cell-mediated neuroinflammation in the effector phase, which could contribute to the higher disease activity observed in RRMS patients with high serum Sema4A levels.


Assuntos
Inflamação/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Semaforinas/imunologia , Células Th17/imunologia , Animais , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Semaforinas/sangue
4.
Immunol Med ; 43(2): 65-71, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32046601

RESUMO

Myasthenia gravis (MG) is a disease caused by pathogenic autoantibodies against the neuromuscular junction and is characterized by muscle weakness. Most MG patients produce antibodies against the acetylcholine receptor (AChR), but a subset of patients have been found to produce autoantibodies against other components of the neuromuscular junction such as muscle specific tyrosine kinase (MuSK) and low-density lipoprotein receptor-related protein 4 (LRP4). The pathogenicity of these autoantibodies has been studied using polyclonal IgG or serum from MG patients; however, pathogenic B cells and monoclonal antibodies from these patients have rarely been investigated because of the difficulty in isolating them. Recently, isolation of pathogenic B cells from MuSK-MG patients and the subsequent generation of monoclonal pathogenic antibodies from these cells, was reported. These data revealed the existence of pathogenic IgG3 and IgG4 antibodies and identified a pathogenic mechanism alternative to the inhibition of MuSK phosphorylation. This review discusses research concerning pathogenic B cells in MG patients and rituximab therapy specifically depleting B cells. Accumulating studies show rituximab therapy is more effective in MuSK-MG patients than in AChR-MG patients. Advances in molecular biology may lead to greater understanding of pathogenic B cells in MG patients and thus potentially lead to the development of novel therapies for MG.


Assuntos
Linfócitos B/imunologia , Epitopos/imunologia , Miastenia Gravis/imunologia , Anticorpos Monoclonais/imunologia , Autoanticorpos/imunologia , Linfócitos B/efeitos dos fármacos , Humanos , Imunoglobulina G , Proteínas Relacionadas a Receptor de LDL/imunologia , Miastenia Gravis/tratamento farmacológico , Junção Neuromuscular/imunologia , Fosforilação , Proteínas Tirosina Quinases/imunologia , Proteínas Tirosina Quinases/metabolismo , Receptores Colinérgicos/imunologia , Rituximab/farmacologia , Rituximab/uso terapêutico
5.
J Immunol ; 203(6): 1650-1664, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31391234

RESUMO

IgD-CD27- double negative (DN) B cells with proinflammatory characteristics are abnormally elevated in a proportion of multiple sclerosis (MS) patients. In this study, the origin and selection characteristics of DN B cells were studied in MS patients and healthy controls (HC). Expression of developmental markers on peripheral blood DN, IgD-CD27+ class-switched memory (CSM) and IgD+CD27- naive B cells of HC (n = 48) and MS patients (n = 96) was determined by flow cytometry. High-throughput adaptive immune receptor repertoire sequencing was performed on peripheral blood DN and CSM B cells of HC and MS patients (n = 3 each). DN B cells from HC and MS patients showed similar phenotypic and Ig repertoire characteristics. Phenotypic analysis indicated a mature state of DN B cells by low CD5, CD10, and CD38 expression. However, the frequency of CD95+ and IgA+ cells was lower in DN versus CSM B cells. DN B cells are Ag experienced, as shown by somatic hypermutation of their Ig genes in adaptive immune receptor repertoire sequencing, although they showed a lower mutation load than CSM B cells. Shared clones were found between DN and CSM B cells, although >95% of the clones were unique to each population, and differences in V(D)J usage and CDR3 physicochemical properties were found. Thus, DN B cells arise in HC and MS patients via a common developmental pathway that is probably linked to immune aging. However, DN and CSM B cells develop through unique differentiation pathways, with most DN B cells representing an earlier maturation state.


Assuntos
Linfócitos B/imunologia , Imunoglobulina D/imunologia , Esclerose Múltipla/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Imunidade Adaptativa/imunologia , Adulto , Feminino , Genes de Imunoglobulinas/imunologia , Humanos , Switching de Imunoglobulina/imunologia , Memória Imunológica/imunologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
JCI Insight ; 4(12)2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31217355

RESUMO

Myasthenia gravis (MG) is a chronic autoimmune disorder characterized by muscle weakness and caused by pathogenic autoantibodies that bind to membrane proteins at the neuromuscular junction. Most patients have autoantibodies against the acetylcholine receptor (AChR), but a subset of patients have autoantibodies against muscle-specific tyrosine kinase (MuSK) instead. MuSK is an essential component of the pathway responsible for synaptic differentiation, which is activated by nerve-released agrin. Through binding MuSK, serum-derived autoantibodies inhibit agrin-induced MuSK autophosphorylation, impair clustering of AChRs, and block neuromuscular transmission. We sought to establish individual MuSK autoantibody clones so that the autoimmune mechanisms could be better understood. We isolated MuSK autoantibody-expressing B cells from 6 MuSK MG patients using a fluorescently tagged MuSK antigen multimer, then generated a panel of human monoclonal autoantibodies (mAbs) from these cells. Here we focused on 3 highly specific mAbs that bound quantitatively to MuSK in solution, to MuSK-expressing HEK cells, and at mouse neuromuscular junctions, where they colocalized with AChRs. These 3 IgG isotype mAbs (2 IgG4 and 1 IgG3 subclass) recognized the Ig-like domain 2 of MuSK. The mAbs inhibited AChR clustering, but intriguingly, they enhanced rather than inhibited MuSK phosphorylation, which suggests an alternative mechanism for inhibiting AChR clustering.


Assuntos
Anticorpos Monoclonais/imunologia , Autoanticorpos/imunologia , Miastenia Gravis/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Receptores Colinérgicos/imunologia , Adulto , Mapeamento de Epitopos , Feminino , Células HEK293 , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/patologia , Proteínas Recombinantes/imunologia
7.
Sci Rep ; 9(1): 5252, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918303

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by several pathologies including oxidative stress, apoptosis, neuroinflammation, and glutamate toxicity. Although multiple reports suggest that ischemia and hypoxia in the spinal cord plays a pivotal role in the pathogenesis of ALS, the precise role of hypoxia in disease progression remains unknown. In this study, we detected higher expression levels of Hypoxia-inducible factor 1-alpha (HIF-1α), a key regulator of cellular responses to hypoxia, in the spinal cord of ALS patients and in the transgenic mice overexpressing the familial ALS-associated G93A SOD1 mutation (mSOD1G93A mice) compared to controls. Single subcutaneous administration of sustained-release prostacyclin analog ONO-1301-MS to mSOD1G93A mice abrogated the expression of HIF-1α in their spinal cords, as well as erythropoietin (EPO) and vascular endothelial growth factor (VEGF), both of which are downstream to HIF-1α. Furthermore, ONO-1301-MS increased the level of mature brain-derived neurotrophic factor (BDNF) and ATP production in the spinal cords of mSOD1G93A mice. At late disease stages, the motor function and the survival of motor neurons of ONO-1301-MS-treated mSOD1G93A mice was significantly improved compared to vehicle-treated mSOD1G93A mice. Our data suggest that vasodilator therapy modulating local blood flow in the spinal cord has beneficial effects against ALS disease progression.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Epoprostenol/análogos & derivados , Piridinas/uso terapêutico , Trifosfato de Adenosina/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Western Blotting , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Neurônios Motores/patologia
8.
PLoS One ; 13(3): e0193986, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29518148

RESUMO

We previously demonstrated that patients with multiple sclerosis (MS) of high serum Sema4A levels are resistant to IFN-ß therapy. To further elucidate the role of serum Sema4A as a biomarker for therapeutic stratification in MS patients, it is important to clarify the efficacy of other disease-modifying drugs (DMD) in those with high serum Sema4A levels. Thus, in this study we investigated whether fingolimod has beneficial effects on MS patients with high Sema4A levels. We retrospectively analyzed annualized relapse rate (ARR) and Expanded Disability Status Scale (EDSS) change in 56 relapsing-remitting multiple sclerosis (RRMS) patients who had been treated with fingolimod, including those who switched from IFN-ß therapy. The levels of Sema4A in the sera were measured by sandwich ELISA. The implications of Sema4A on the efficacy of fingolimod were investigated by administering recombinant Sema4A-Fc and fingolimod to mice with experimental autoimmune encephalomyelitis (EAE). Retrospective analysis of MS cohort (17 high Sema4A and 39 low Sema4A) demonstrated the effectiveness of fingolimod in those with high serum Sema4A levels, showing reduction of ARR (from 1.21 to 0.12) and EDSS progression (from 0.50 to 0.04). Consistent with this observation, improvement in the disease severity of EAE mice receiving recombinant Sema4A-Fc was also observed after fingolimod treatment. These data suggest that fingolimod could serve as a candidate DMD for managing the disease activity of MS patients with high Sema4A levels.


Assuntos
Antirreumáticos/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Cloridrato de Fingolimode/uso terapêutico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Semaforinas/sangue , Adulto , Animais , Biomarcadores , Progressão da Doença , Avaliação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Resistência a Medicamentos , Substituição de Medicamentos , Encefalomielite Autoimune Experimental/sangue , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Interferon beta/uso terapêutico , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/sangue , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/toxicidade , Estudos Retrospectivos , Semaforinas/genética , Semaforinas/toxicidade , Índice de Gravidade de Doença , Organismos Livres de Patógenos Específicos , Resultado do Tratamento
9.
Neuromuscul Disord ; 28(2): 154-157, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29307446

RESUMO

GNE myopathy is a rare autosomal recessive myopathy caused by bi-allelic mutations in GNE. We report the case of a 36-year-old man who presented with typical clinical and pathological features of GNE myopathy including distal dominant muscle weakness from the age of 29 and numerous rimmed vacuoles on muscle biopsy. Targeted next-generation sequencing revealed a novel synonymous mutation, c.1500A>G (p.G500=), together with a common Japanese mutation c.620A>T (p.D207V). The cDNA analysis of the biopsied muscle revealed that this synonymous mutation creates a cryptic splice donor site that causes aberrant splicing. This report will expand our understanding of the genetic heterogeneity of GNE myopathy emphasizing the importance of interpreting synonymous variants in genetic testing.


Assuntos
Miopatias Distais/genética , Miopatias Distais/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação , Splicing de RNA , Adulto , Miopatias Distais/patologia , Humanos , Masculino , Músculo Esquelético/patologia , Fenótipo , Splicing de RNA/genética
10.
PLoS One ; 12(11): e0187215, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29107957

RESUMO

Oxidative stress and mitochondrial dysfunction are important determinants of neurodegeneration in secondary progressive multiple sclerosis (SPMS). We previously showed that febuxostat, a xanthine oxidase inhibitor, ameliorated both relapsing-remitting and secondary progressive experimental autoimmune encephalomyelitis (EAE) by preventing neurodegeneration in mice. In this study, we investigated how febuxostat protects neuron in secondary progressive EAE. A DNA microarray analysis revealed that febuxostat treatment increased the CNS expression of several mitochondria-related genes in EAE mice, most notably including GOT2, which encodes glutamate oxaloacetate transaminase 2 (GOT2). GOT2 is a mitochondrial enzyme that oxidizes glutamate to produce α-ketoglutarate for the Krebs cycle, eventually leading to the production of adenosine triphosphate (ATP). Whereas GOT2 expression was decreased in the spinal cord during the chronic progressive phase of EAE, febuxostat-treated EAE mice showed increased GOT2 expression. Moreover, febuxostat treatment of Neuro2a cells in vitro ameliorated ATP exhaustion induced by rotenone application. The ability of febuxostat to preserve ATP production in the presence of rotenone was significantly reduced by GOT2 siRNA. GOT2-mediated ATP synthesis may be a pivotal mechanism underlying the protective effect of febuxostat against neurodegeneration in EAE. Accordingly, febuxostat may also have clinical utility as a disease-modifying drug in SPMS.


Assuntos
Aspartato Aminotransferase Mitocondrial/metabolismo , Encefalomielite Autoimune Experimental/prevenção & controle , Febuxostat/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Aspartato Aminotransferase Mitocondrial/genética , Linhagem Celular , Encefalomielite Autoimune Experimental/enzimologia , Metabolismo Energético , Febuxostat/farmacologia , Humanos , Camundongos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Rotenona/farmacologia , Xantina Oxidase/antagonistas & inibidores
11.
Rinsho Shinkeigaku ; 57(1): 33-36, 2017 01 31.
Artigo em Japonês | MEDLINE | ID: mdl-28025409

RESUMO

A 62-year-old woman presented with paresthesia of limbs, gait disturbance, urinary retention and constipation following upper respiratory infection. Neurological examination revealed gait disturbance due to loss of position sense in her extremities with intact muscle power, and autonomic failure represented by orthostatic hypotension, constipation and autonomic bladder. Cerebrospinal fluid analysis showed normal cell counts with elevated protein levels. Nerve conduction study showed sensory nerve impairment with almost normal motor nerve conduction in her upper and lower extremities. Sympathetic skin response of both hands was unresponsive, indicating autonomic nervous dysfunction. We diagnosed her as having acute autonomic and sensory neuropathy (AASN) and treated her with intravenous immunoglobulin, which ameliorated her symptoms enabling her to walk without any assistance at the time of discharge. Screening tests of serum autoantibodies revealed positivity of antibody against a mixture of galactocerebroside (Gal-Cer) and phospholipids. According to previous literature, no specific antibodies have been identified in AASN. This case, therefore, suggests a possible role of anti-Gal-Cer antibody in the pathogenesis of AASN.


Assuntos
Autoanticorpos/sangue , Doenças do Sistema Nervoso Autônomo/diagnóstico , Galactosilceramidas/imunologia , Síndrome de Guillain-Barré/diagnóstico , Fosfolipídeos/imunologia , Células Receptoras Sensoriais , Doença Aguda , Doenças do Sistema Nervoso Autônomo/imunologia , Doenças do Sistema Nervoso Autônomo/terapia , Biomarcadores/sangue , Feminino , Síndrome de Guillain-Barré/imunologia , Síndrome de Guillain-Barré/terapia , Humanos , Imunoglobulinas Intravenosas/administração & dosagem , Pessoa de Meia-Idade , Resultado do Tratamento
12.
Ann Clin Transl Neurol ; 2(1): 56-66, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25642435

RESUMO

OBJECTIVES: The intestinal microflora affects the pathogenesis of several autoimmune diseases by influencing immune system function. Some bacteria, such as lactic acid bacteria, have been reported to have beneficial effects on immune function. However, little is known about the effects of yeasts. Here, we aimed to investigate the effects of various dietary yeasts contained in fermented foods on experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), and to elucidate the mechanisms underlying these effects. METHODS: The effects of eight yeasts selected from 18 types of yeasts contained in fermented foods were examined using an EAE model. Of these, Candida kefyr was investigated by analyzing the intestinal microflora and its effects on intestinal and systemic immune states. RESULTS: Administration of C. kefyr ameliorated the severity of EAE. Reduced numbers of Th17 cells, suppressed interleukin (IL)-6 production by intestinal explants, and increased Tregs and CD103-positive regulatory dendritic cells in mesenteric lymph nodes (MLNs) were observed. Analysis of 16s-rDNA from feces of C. kefyr-treated mice demonstrated increased Lactobacillales and decreased Bacteroides compared to control flora. Transfer of intestinal microbiota also resulted in decreased Bacteroides and ameliorated symptoms of EAE. Thus, oral administration of C. kefyr ameliorated EAE by altering the microflora, accompanied by increased Tregs and CD103-positive regulatory dendritic cells in MLNs and decreased Th17 cells in the intestinal lamina propria. INTERPRETATION: Oral ingestion of C. kefyr may have beneficial effects on MS by modifying microflora. In addition, our findings also suggested the potential health benefits of dietary yeasts.

14.
PLoS One ; 9(11): e111598, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25369426

RESUMO

BACKGROUND: Activation of glial cells is a cardinal feature in multiple sclerosis (MS) pathology, and acetate has been reported to be selectively uptaken by astrocytes in the CNS. The aim of this study was to investigate the efficacy of PET with (11)C-acetate for MS diagnosis. MATERIALS AND METHODS: Six patients with relapsing-remitting MS and 6 healthy volunteers (HV) were enrolled. The (11)C-acetate brain uptake on PET was measured in patients with MS and HV. Volume-of-interest analysis of cerebral gray and white matter based on the segmentation technique for co-registered MRI and voxel-based statistical parametric analysis were performed. Correlation between 11C-acetate uptake and the lesion number in T1- and T2- weighted MR images were also assessed. RESULTS: The standardized uptake value (SUV) of 11C-acetate was increased in both white and gray matter in MS patients compared to HV. Voxel-based statistical analysis revealed a significantly increased SUV relative to that in the bilateral thalami (SUVt) in a broad area of white matter, particularly in the subcortical white matter of MS patients. The numbers of T2 lesions and T1 black holes were significantly correlated with SUV of (11)C-acetate in white and gray matter. CONCLUSIONS: The 11C-acetate uptake significantly increased in MS patients and correlated to the number of MRI lesions. These preliminary data suggest that (11)C-acetate PET can be a useful clinical examination for MS patients.


Assuntos
Ácido Acético , Encéfalo/patologia , Esclerose Múltipla/diagnóstico , Tomografia por Emissão de Pósitrons/métodos , Adulto , Idoso , Radioisótopos de Carbono , Feminino , Humanos , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Esclerose Múltipla Recidivante-Remitente/patologia
15.
J Neuroinflammation ; 11: 179, 2014 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-25326688

RESUMO

BACKGROUND: Accumulating evidence has shown that the inflammatory process participates in the pathogenesis of amyotrophic lateral sclerosis (ALS), suggesting a therapeutic potential of anti-inflammatory agents. Janus kinase 2 (JAK2), one of the key molecules in inflammation, transduces signals downstream of various inflammatory cytokines, and some Janus kinase inhibitors have already been clinically applied to the treatment of inflammatory diseases. However, the efficacy of JAK2 inhibitors in treatment of ALS remains to be demonstrated. In this study, we examined the role of JAK2 in ALS by administering a selective JAK2 inhibitor, R723, to an animal model of ALS (mSOD1G93A mice). FINDINGS: Orally administered R723 had sufficient access to spinal cord tissue of mSOD1G93A mice and significantly reduced the number of Ly6c positive blood monocytes, as well as the expression levels of IFN-γ and nitric oxide synthase 2, inducible (iNOS) in the spinal cord tissue. R723 treatment did not alter the expression levels of Il-1ß, Il-6, TNF, and NADPH oxidase 2 (NOX2), and suppressed the expression of Retnla, which is one of the markers of neuroprotective M2 microglia. As a result, R723 did not alter disease progression or survival of mSOD1G93A mice. CONCLUSIONS: JAK2 inhibitor was not effective against ALS symptoms in mSOD1G93A mice, irrespective of suppression in several inflammatory molecules. Simultaneous suppression of anti-inflammatory microglia with a failure to inhibit critical other inflammatory molecules might explain this result.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Inibidores Enzimáticos/farmacologia , Janus Quinase 2/antagonistas & inibidores , Microglia/efeitos dos fármacos , Degeneração Neural/prevenção & controle , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/enzimologia , Degeneração Neural/imunologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/patologia
16.
J Neuroimmunol ; 268(1-2): 43-9, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24439904

RESUMO

Approximately one-third of patients with multiple sclerosis (MS) respond poorly to interferon-beta (IFN-ß) therapy. Serum Sema4A is increased in MS patients, and those who have high Sema4A do not respond to IFN-ß therapy. In this study, we investigated whether recombinant Sema4A abrogates the efficacy of IFN-ß in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Administration of Sema4A concurrently with IFN-ß diminished the efficacy of IFN-ß in EAE. These effects of Sema4A were attributed to promote Th1 and Th17 differentiation and to increase adhesive activation of T cells to endothelial cells, even in the presence of IFN-ß.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Fatores Imunológicos/farmacologia , Interferon beta/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Semaforinas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Resistência a Medicamentos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imuno-Histoquímica , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Semaforinas/farmacologia
17.
PLoS One ; 8(8): e71329, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951137

RESUMO

OBJECTIVES: Oxidative stress plays an important role in the pathogenesis of multiple sclerosis (MS). Though reactive oxygen species (ROS) are produced by various mechanisms, xanthine oxidase (XO) is a major enzyme generating ROS in the context of inflammation. The objectives of this study were to investigate the involvement of XO in the pathogenesis of MS and to develop a potent new therapy for MS based on the inhibition of ROS. METHODS: XO were assessed in a model of MS: experimental autoimmune encephalomyelitis (EAE). The contribution of XO-generated ROS to the pathogenesis of EAE was assessed by treating EAE mice with a novel XO inhibitor, febuxostat. The efficacy of febuxostat was also examined in in vitro studies. RESULTS: We showed for the first time that the expression and the activity of XO were increased dramatically within the central nervous system of EAE mice as compared to naïve mice. Furthermore, prophylactic administration of febuxostat, a XO inhibitor, markedly reduced the clinical signs of EAE. Both in vivo and in vitro studies showed infiltrating macrophages and microglia as the major sources of excess XO production, and febuxostat significantly suppressed ROS generation from these cells. Inflammatory cellular infiltration and glial activation in the spinal cord of EAE mice were inhibited by the treatment with febuxostat. Importantly, therapeutic efficacy was observed not only in mice with relapsing-remitting EAE but also in mice with secondary progressive EAE by preventing axonal loss and demyelination. CONCLUSION: These results highlight the implication of XO in EAE pathogenesis and suggest XO as a target for MS treatment and febuxostat as a promising therapeutic option for MS neuropathology.


Assuntos
Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/patologia , Esclerose Múltipla/enzimologia , Esclerose Múltipla/patologia , Xantina Oxidase/análise , Xantina Oxidase/metabolismo , Animais , Axônios/efeitos dos fármacos , Axônios/enzimologia , Axônios/patologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Febuxostat , Feminino , Camundongos , Esclerose Múltipla/tratamento farmacológico , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/enzimologia , Bainha de Mielina/patologia , Espécies Reativas de Oxigênio/metabolismo , Tiazóis/uso terapêutico , Xantina Oxidase/antagonistas & inibidores
18.
J Immunol ; 188(10): 4858-65, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22491253

RESUMO

Multiple sclerosis (MS) is a demyelinating autoimmune disease of the CNS and a leading cause of lasting neurologic disabilities in young adults. Although the precise mechanism remains incompletely understood, Ag presentation and subsequent myelin-reactive CD4(+) T cell activation/differentiation are essential for the pathogenesis of MS. Although semaphorins were initially identified as axon guidance cues during neural development, several semaphorins are crucially involved in various phases of immune responses. Sema4A is one of the membrane-type class IV semaphorins, which we originally identified from the cDNA library of dendritic cell (DC). Sema4A plays critical roles in T cell activation and Th1 differentiation during the course of experimental autoimmune encephalomyelitis, an animal model of MS; however, its pathological involvement in human MS has not been determined. In this study, we report that Sema4A is increased in the sera of patients with MS. The expression of Sema4A is increased on DCs in MS patients and shed from these cells in a metalloproteinase-dependent manner. DC-derived Sema4A is not only critical for Th1 but also for Th17 cell differentiation, and MS patients with high Sema4A levels exhibit Th17 skewing. Furthermore, patients with high Sema4A levels have more severe disabilities and are unresponsive to IFN-ß treatment. Taken together, our results suggest that Sema4A is involved in the pathogenesis of MS by promoting Th17 skewing.


Assuntos
Diferenciação Celular/imunologia , Interferon beta/uso terapêutico , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Semaforinas/biossíntese , Células Th17/imunologia , Regulação para Cima/imunologia , Sequência de Aminoácidos , Animais , Diferenciação Celular/genética , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Esclerose Múltipla/patologia , Ratos , Semaforinas/sangue , Semaforinas/deficiência , Semaforinas/metabolismo , Células Th17/metabolismo , Células Th17/patologia , Regulação para Cima/genética
19.
PLoS One ; 6(11): e27644, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110705

RESUMO

BACKGROUND: Certain intestinal microflora are thought to regulate the systemic immune response. Lactic acid bacteria are one of the most studied bacteria in terms of their beneficial effects on health and autoimmune diseases; one of which is Multiple sclerosis (MS) which affects the central nervous system. We investigated whether the lactic acid bacterium Pediococcus acidilactici, which comprises human commensal bacteria, has beneficial effects on experimental autoimmune encephalomyelitis (EAE), an animal model of MS. METHODOLOGY/PRINCIPAL FINDINGS: P. acidilactici R037 was orally administered to EAE mice to investigate the effects of R037. R037 treatment suppressed clinical EAE severity as prophylaxis and therapy. The antigen-specific production of inflammatory cytokines was inhibited in R037-treated mice. A significant increase in the number of CD4(+) Interleukin (IL)-10-producing cells was observed in the mesenteric lymph nodes (MLNs) and spleens isolated from R037-treated naive mice, while no increase was observed in the number of these cells in the lamina propria. Because only a slight increase in the CD4(+)Foxp3(+) cells was observed in MLNs, R037 may primarily induce Foxp3(-) IL10-producing T regulatory type 1 (Tr1) cells in MLNs, which contribute to the beneficial effect of R037 on EAE. CONCLUSIONS/SIGNIFICANCE: An orally administered single strain of P. acidilactici R037 ameliorates EAE by inducing IL10-producing Tr1 cells. Our findings indicate the therapeutic potential of the oral administration of R037 for treating multiple sclerosis.


Assuntos
Encefalopatias/imunologia , Encefalopatias/microbiologia , Doença de Hashimoto/imunologia , Doença de Hashimoto/microbiologia , Interleucina-10/biossíntese , Ácido Láctico/biossíntese , Pediococcus/fisiologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/microbiologia , Administração Oral , Animais , Encefalopatias/metabolismo , Encefalopatias/terapia , Encefalite , Feminino , Doença de Hashimoto/metabolismo , Doença de Hashimoto/terapia , Camundongos , Pediococcus/metabolismo
20.
Biochem Biophys Res Commun ; 394(1): 205-10, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20188706

RESUMO

Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system (CNS). Anti-aquaporin-4 antibody (AQP4-Ab) is a highly specific serum autoantibody that is detected in patients with NMO. Several lines of evidence indicate that AQP4-Ab not only serves as a disease marker but also plays a pivotal role in the pathogenesis of NMO. Although the pathogenicity of AQP4-Ab in vivo has recently been demonstrated, the presence of CNS antigen-specific T cells is recognized as a prerequisite for the antibody to exert pathogenic effects. Thus, it remains unclear whether AQP4-Ab is the primary cause of the disease or a disease-modifying factor in NMO. Here we report that pre-treatment with complete Freund's adjuvant (CFA) alone is sufficient for AQP4-Ab to induce astrocytic damage in vivo. Our results show the primary pathogenic role of AQP4-Ab in the absence of CNS antigen-specific T cells, and suggest that danger signals provided by nonspecific inflammation can be a trigger for those who harbor the autoantibody to develop NMO.


Assuntos
Aquaporina 4/imunologia , Astrócitos/imunologia , Autoanticorpos/imunologia , Citotoxicidade Imunológica , Neuromielite Óptica/imunologia , Linfócitos T/imunologia , Animais , Sistema Nervoso Central/imunologia , Adjuvante de Freund/farmacocinética , Humanos , Ratos , Ratos Endogâmicos Lew
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...