Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 12(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086690

RESUMO

Doxorubicin (DXR) has been reported to have direct cytotoxicity against cancer cells and indirect immunotoxicity by modulation of host antitumor immunity. Hence, it may prevent cancer progression by a dual mechanism. Doxil®, a formulation of DXR encapsulated in polyethylene glycol modified (PEGylated) liposomes, is the most widely used of the clinically approved liposomal anticancer drugs. However, the effect of Doxil® on host antitumor immunity is not well understood. In this study, Doxil® efficiently suppressed tumor growth in immunocompetent mice bearing C26 murine colorectal carcinomas, but not in T cell-deficient nude mice, indicating a contribution of T cells to the overall antitumor effect of Doxil®. In immunocompetent mice, Doxil® increased major histocompatibility complex (MHC-1) levels in C26 tumors, which may be an indicator of increased immunogenicity of tumor cells, and potentially amplified tumor immunogenicity by decreasing immunosuppressive cells such as regulatory T cells, tumor-associated microphages and myeloid-derived suppressor cells that collectively suppress T cell-mediated antitumor responses. This suggests that encapsulation of DXR into PEGylated liposomes increased the therapeutic efficacy of DXR though effects on host antitumor immunogenicity in addition to direct cytotoxic effects on tumor cells. This report describes the role of host antitumor immunity in the overall therapeutic effects of Doxil®. Manipulating pharmacokinetics and biodistribution of chemotherapeutic agents with immunomodulatory properties may increase their therapeutic efficacies by amplifying host antitumor immunity in addition to direct cytotoxic effects on tumor cells.

2.
Biol Pharm Bull ; 39(9): 1555-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27582335

RESUMO

Hydrodynamic tail vein injection was considered an in vivo transfection method that yields a higher level of gene expression mainly in the liver. This method has been applied to cancer gene therapy targeting both hepatic and non-hepatic cancers. However, intratumor transgene expression in non-hepatic tumors has not been well studied. In this study, we showed an extended transgene expression of ß-galactosidase (LacZ), a nonsecretory protein, in a subcutaneously implanted murine solid tumor following the hydrodynamic injection of plasmid DNA (LacZ pDNA). Our result may indicate that the hydrodynamic injection method is a powerful tool that can be used to gain transgene expression not only in the liver but also in solid tumors.


Assuntos
DNA/administração & dosagem , Terapia Genética/métodos , Neoplasias/metabolismo , Transgenes/genética , beta-Galactosidase/genética , Animais , Linhagem Celular Tumoral , Expressão Gênica , Técnicas de Transferência de Genes , Injeções Intravenosas , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos , Cauda , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...