Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(22): 14972-14988, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38787738

RESUMO

Caspases are a highly conserved family of cysteine-aspartyl proteases known for their essential roles in regulating apoptosis, inflammation, cell differentiation, and proliferation. Complementary to genetic approaches, small-molecule probes have emerged as useful tools for modulating caspase activity. However, due to the high sequence and structure homology of all 12 human caspases, achieving selectivity remains a central challenge for caspase-directed small-molecule inhibitor development efforts. Here, using mass spectrometry-based chemoproteomics, we first identify a highly reactive noncatalytic cysteine that is unique to caspase-2. By combining both gel-based activity-based protein profiling (ABPP) and a tobacco etch virus (TEV) protease activation assay, we then identify covalent lead compounds that react preferentially with this cysteine and afford a complete blockade of caspase-2 activity. Inhibitory activity is restricted to the zymogen or precursor form of monomeric caspase-2. Focused analogue synthesis combined with chemoproteomic target engagement analysis in cellular lysates and in cells yielded both pan-caspase-reactive molecules and caspase-2 selective lead compounds together with a structurally matched inactive control. Application of this focused set of tool compounds to stratify the functions of the zymogen and partially processed (p32) forms of caspase-2 provide evidence to support that caspase-2-mediated response to DNA damage is largely driven by the partially processed p32 form of the enzyme. More broadly, our study highlights future opportunities for the development of proteoform-selective caspase inhibitors that target nonconserved and noncatalytic cysteine residues.


Assuntos
Caspase 2 , Inibidores de Caspase , Proteômica , Humanos , Caspase 2/metabolismo , Caspase 2/química , Proteômica/métodos , Inibidores de Caspase/farmacologia , Inibidores de Caspase/química , Inibidores de Caspase/metabolismo , Estrutura Molecular , Cisteína Endopeptidases
2.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961563

RESUMO

Caspases are a highly conserved family of cysteine-aspartyl proteases known for their essential roles in regulating apoptosis, inflammation, cell differentiation, and proliferation. Complementary to genetic approaches, small-molecule probes have emerged as useful tools for modulating caspase activity. However, due to the high sequence and structure homology of all twelve human caspases, achieving selectivity remains a central challenge for caspase-directed small-molecule inhibitor development efforts. Here, using mass spectrometry-based chemoproteomics, we first identify a highly reactive non-catalytic cysteine that is unique to caspase-2. By combining both gel-based activity-based protein profiling (ABPP) and a tobacco etch virus (TEV) protease activation assay, we then identify covalent lead compounds that react preferentially with this cysteine and afford a complete blockade of caspase-2 activity. Inhibitory activity is restricted to the zymogen or precursor form of monomeric caspase-2. Focused analogue synthesis combined with chemoproteomic target engagement analysis in cellular lysates and in cells yielded both pan-caspase reactive molecules and caspase-2 selective lead compounds together with a structurally matched inactive control. Application of this focused set of tool compounds to stratify caspase contributions to initiation of intrinsic apoptosis, supports compensatory caspase-9 activity in the context of caspase-2 inactivation. More broadly, our study highlights future opportunities for the development of proteoform-selective caspase inhibitors that target non-conserved and non-catalytic cysteine residues.

3.
Dev Biol ; 483: 157-168, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065905

RESUMO

Regeneration of complex tissues is initiated by an injury-induced stress response, eventually leading to activation of developmental signaling pathways such as Wnt signaling. How early injury cues are interpreted and coupled to activation of these developmental signals and their targets is not well understood. Here, we show that Hif1α, a stress induced transcription factor, is required for tail regeneration in Xenopus tropicalis. We find that Hif1α is required for regeneration of differentiated axial tissues, including axons and muscle. Using RNA-sequencing, we find that Hif1α and Wnt converge on a broad set of genes required for posterior specification and differentiation, including the posterior hox genes. We further show that Hif1α is required for transcription via a Wnt-responsive element, a function that is conserved in both regeneration and early neural patterning. Our findings indicate that Hif1α has regulatory roles in Wnt target gene expression across multiple tissue contexts.


Assuntos
Padronização Corporal/genética , Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Cauda/metabolismo , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Proteínas de Xenopus/genética , Xenopus/genética , Animais , Axônios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Larva/genética , Músculos/metabolismo , Regeneração/genética , Proteínas Wnt/metabolismo , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...