Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 235(4): 1426-1441, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35713645

RESUMO

Root hair growth is tuned in response to the environment surrounding plants. While most previous studies focused on the enhancement of root hair growth during nutrient starvation, few studies investigated the root hair response in the presence of excess nutrients. We report that the post-embryonic growth of wild-type Arabidopsis plants is strongly suppressed with increasing nutrient availability, particularly in the case of root hair growth. We further used gene expression profiling to analyze how excess nutrient availability affects root hair growth, and found that RHD6 subfamily genes, which are positive regulators of root hair growth, are downregulated in this condition. However, defects in GTL1 and DF1, which are negative regulators of root hair growth, cause frail and swollen root hairs to form when excess nutrients are supplied. Additionally, we observed that the RHD6 subfamily genes are mis-expressed in gtl1-1 df1-1. Furthermore, overexpression of RSL4, an RHD6 subfamily gene, induces swollen root hairs in the face of a nutrient overload, while mutation of RSL4 in gtl1-1 df1-1 restore root hair swelling phenotype. In conclusion, our data suggest that GTL1 and DF1 prevent unnecessary root hair formation by repressing RSL4 under excess nutrient conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação/genética , Nutrientes , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Plant Biotechnol (Tokyo) ; 39(1): 51-58, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35601015

RESUMO

4-Phenylbutyric acid (4PBA) is utilized as a drug to treat urea cycle disorders and is also being studied as a potential anticancer drug that acts via its histone deacetylase (HDAC) inhibitor activity. During a search to find small molecules that affect plant regeneration in Arabidopsis, we found that 4PBA treatment promotes this process by mimicking the effect of exogenous auxin. Specifically, plant tissue culture experiments revealed that a medium containing 4PBA enhances callus formation and subsequent shoot regeneration. Analyses with auxin-responsive or cytokinin-responsive marker lines demonstrated that 4PBA specifically enhances AUXIN RESPONSE FACTOR (ARF)-dependent auxin responses. Our western blot analyses showed that 4PBA treatment does not enhance histone acetylation in Arabidopsis, in contrast to butyric acid and trichostatin A, other chemicals often used as HDAC inhibitors, suggesting this mechanism of action does not explain the observed effect of 4PBA on regeneration. Finally, mass spectroscopic analysis and genetic approaches uncovered that 4PBA in Arabidopsis plants is converted to phenylacetic acid (PAA), a known natural auxin, in a manner independent of peroxisomal IBR3-related ß-oxidation. This study demonstrates that 4PBA application promotes regeneration in explants via its auxin activity and has potential applications to not only plant tissue culture engineering but also research on the plant ß-oxidation pathway.

3.
New Phytol ; 232(2): 734-752, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375004

RESUMO

Wounding triggers de novo organogenesis, vascular reconnection and defense response but how wound stress evoke such a diverse array of physiological responses remains unknown. We previously identified AP2/ERF transcription factors, WOUND INDUCED DEDIFFERENTIATION1 (WIND1) and its homologs, WIND2, WIND3 and WIND4, as key regulators of wound-induced cellular reprogramming in Arabidopsis. To understand how WIND transcription factors promote downstream events, we performed time-course transcriptome analyses after WIND1 induction. We observed a significant overlap between WIND1-induced genes and genes implicated in cellular reprogramming, vascular formation and pathogen response. We demonstrated that WIND transcription factors induce several reprogramming genes to promote callus formation at wound sites. We, in addition, showed that WIND transcription factors promote tracheary element formation, vascular reconnection and resistance to Pseudomonas syringae pv. tomato DC3000. These results indicate that WIND transcription factors function as key regulators of wound-induced responses by promoting dynamic transcriptional alterations. This study provides deeper mechanistic insights into how plants control multiple physiological responses after wounding.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pseudomonas syringae , Fatores de Transcrição/genética
4.
Plant Cell Physiol ; 62(12): 1963-1974, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34226939

RESUMO

Woody cells generate lignocellulosic biomass, which is a promising sustainable bioresource for wide industrial applications. Woody cell differentiation in vascular plants, including the model plant poplar (Populus trichocarpa), is regulated by a set of NAC family transcription factors, the VASCULAR-RELATED NAC-DOMAIN (VND), NAC SECONDARY CELL WALL THICKENING PROMOTING FACTOR (NST)/SND, and SOMBRERO (SMB) (VNS)-related proteins, but the precise contributions of each VNS protein to wood quality are unknown. Here, we performed a detailed functional analysis of the poplar SMB-type VNS proteins PtVNS13-PtVNS16. PtVNS13-PtVNS16 were preferentially expressed in the roots of young poplar plantlets, similar to the Arabidopsis thalianaSMB gene. PtVNS13 and PtVNS14, as well as the NST-type PtVNS11, suppressed the abnormal root cap phenotype of the Arabidopsis sombrero-3 mutant, whereas the VND-type PtVNS07 gene did not, suggesting a functional gap between SMB- or NST-type VNS proteins and VND-type VNS proteins. Overexpressing PtVNS13-PtVNS16 in Arabidopsis seedlings and poplar leaves induced ectopic xylem-vessel-like cells with secondary wall deposition, and a transient expression assay showed that PtVNS13-16 transactivated woody-cell-related genes. Interestingly, although any VNS protein rescued the pendant stem phenotype of the Arabidopsis nst1-1 nst3-1 mutant, the resulting inflorescence stems exhibited distinct cell wall properties: poplar VNS genes generated woody cell walls with higher enzymatic saccharification efficiencies compared with Arabidopsis VNS genes. Together, our data reveal clear functional diversity among VNS proteins in woody cell differentiation and demonstrate a novel VNS-based strategy for modifying woody cell wall properties toward enhanced utilization of woody biomass.


Assuntos
Parede Celular/metabolismo , Expressão Gênica , Proteínas de Plantas/metabolismo , Populus/genética , Fatores de Transcrição/genética , Madeira/metabolismo , Proteínas de Plantas/genética , Populus/metabolismo , Fatores de Transcrição/metabolismo
5.
Front Plant Sci ; 12: 670101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995465

RESUMO

Oryza longistaminata, a wild rice, can propagate vegetatively via rhizome formation and, thereby, expand its territory through horizontal growth of branched rhizomes. The structural features of rhizomes are similar to those of aerial stems; however, the physiological roles of the two organs are different. Nitrogen nutrition is presumed to be linked to the vegetative propagation activity of rhizomes, but the regulation of rhizome growth in response to nitrogen nutrition and the underlying biological processes have not been well characterized. In this study, we analyzed rhizome axillary bud growth in response to nitrogen nutrition and examined the involvement of cytokinin-mediated regulation in the promotion of bud outgrowth in O. longistaminata. Our results showed that nitrogen nutrition sufficiency promoted rhizome bud outgrowth to form secondary rhizomes. In early stages of the response to nitrogen application, glutamine accumulated rapidly, two cytokinin biosynthesis genes, isopentenyltransferase, and CYP735A, were up-regulated with accompanying cytokinin accumulation, and expression of an ortholog of FINE CULM1, a negative regulator of axillary bud outgrowth, was severely repressed in rhizomes. These results suggest that, despite differences in physiological roles of these organs, the nitrogen-dependent outgrowth of rhizome axillary buds in O. longistaminata is regulated by a mechanism similar to that of shoot axillary buds in O. sativa. Our findings provide a clue for understanding how branched rhizome growth is regulated to enhance nutrient acquisition strategies.

6.
Plant Biotechnol (Tokyo) ; 37(3): 311-318, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33088194

RESUMO

The plant-specific NAC transcription factor VASCULAR-RELATED NAC-DOMAIN 7 (VND7) functions in xylem vessel cell differentiation in Arabidopsis thaliana. To identify novel factors regulating xylem vessel cell differentiation, we previously performed ethyl methanesulfonate mutagenesis of a transgenic 35S::VND7-VP16-GR line in which VND7 activity can be induced post-translationally by glucocorticoid treatment. We successfully isolated mutants that fail to form ectopic xylem vessel cells named seiv (suppressor of ectopic vessel cell differentiation induced by VND7) mutants. Here, we isolated eight novel dominant seiv mutants: seiv2 to seiv9. In these seiv mutants, ectopic xylem vessel cell differentiation was inhibited in aboveground but not underground tissues. Specifically, the shoot apices of the mutants, containing shoot apical meristems and leaf primordia, completely lacked ectopic xylem vessel cells. In these mutants, the VND7-induced upregulation of downstream genes was reduced, especially in shoots compared to roots. However, endogenous xylem vessel cell formation was not affected in the seiv mutants. Therefore, the seiv mutations identified in this study have repressive effects on cell differentiation in shoot meristematic regions, resulting in inhibited ectopic xylem vessel cell differentiation.

7.
Curr Biol ; 30(8): 1454-1466.e6, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32197081

RESUMO

Upon detecting abiotic or biotic stress, plants generally reduce their growth, enabling resources to be conserved and diverted to stress response mechanisms. In Arabidopsis thaliana, the AT-hook motif nuclear-localized (AHL) transcription factor family has been implicated in restricting rosette growth in response to stress. However, the mechanism by which AHLs repress growth in rosettes is unknown. In this study, we establish that SUPPRESSOR OF PHYTOCHROME B4-#3 (SOB3) and other AHLs restrict petiole elongation by antagonizing the growth-promoting PHYTOCHROME-INTERACTING FACTORs (PIFs). Our data show that high levels of SOB3 expression lead to a short-petiole phenotype similar to that conferred by removal of PIF4. Conversely, the dominant-negative sob3-6 mutant has long petioles, a phenotype which is PIF-dependent. We further show that AHLs repress the expression of many PIF-activated genes, several of which are involved in hormone-mediated promotion of growth. Additionally, a subset of PIF-activated, AHL-repressed genes are directly bound by both SOB3 and PIFs. Finally, SOB3 reduces binding of PIF4 to shared target loci. Collectively, our results demonstrate that AHLs repress petiole growth by antagonizing PIF-mediated transcriptional activation of genes associated with growth and hormone pathways. By elucidating a mechanism via which the stress-responsive AHL transcription factor family influences growth in petioles, this study identifies a key step in the gene regulatory network controlling leaf growth in response to the environment.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/crescimento & desenvolvimento , Ativação Transcricional , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Redes Reguladoras de Genes , Folhas de Planta/genética , Transdução de Sinais
8.
Commun Biol ; 2: 404, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31701032

RESUMO

Plant somatic cells reprogram and regenerate new tissues or organs when they are severely damaged. These physiological processes are associated with dynamic transcriptional responses but how chromatin-based regulation contributes to wound-induced gene expression changes and subsequent cellular reprogramming remains unknown. In this study we investigate the temporal dynamics of the histone modifications H3K9/14ac, H3K27ac, H3K4me3, H3K27me3, and H3K36me3, and analyze their correlation with gene expression at early time points after wounding. We show that a majority of the few thousand genes rapidly induced by wounding are marked with H3K9/14ac and H3K27ac before and/or shortly after wounding, and these include key wound-inducible reprogramming genes such as WIND1, ERF113/RAP2.6 L and LBD16. Our data further demonstrate that inhibition of GNAT-MYST-mediated histone acetylation strongly blocks wound-induced transcriptional activation as well as callus formation at wound sites. This study thus uncovered a key epigenetic mechanism that underlies wound-induced cellular reprogramming in plants.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Código das Histonas/genética , Acetilação , Arabidopsis/citologia , Proteínas de Arabidopsis/metabolismo , Reprogramação Celular/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Doenças das Plantas/genética , Plantas Geneticamente Modificadas , Ativação Transcricional
9.
Nat Plants ; 5(4): 363-368, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30911123

RESUMO

Technology involving the targeted mutagenesis of plants using programmable nucleases has been developing rapidly and has enormous potential in next-generation plant breeding. Notably, the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) (CRISPR-Cas9) system has paved the way for the development of rapid and cost-effective procedures to create new mutant populations in plants1,2. Although genome-edited plants from multiple species have been produced successfully using a method in which a Cas9-guide RNA (gRNA) expression cassette and selectable marker are integrated into the genomic DNA by Agrobacterium tumefaciens-mediated transformation or particle bombardment3, CRISPR-Cas9 integration increases the chance of off-target modifications4, and foreign DNA sequences cause legislative concerns about genetically modified organisms5. Therefore, DNA-free genome editing has been developed, involving the delivery of preassembled Cas9-gRNA ribonucleoproteins (RNPs) into protoplasts derived from somatic tissues by polyethylene glycol-calcium (PEG-Ca2+)-mediated transfection in tobacco, Arabidopsis, lettuce, rice6, Petunia7, grapevine, apple8 and potato9, or into embryo cells by biolistic bombardment in maize10 and wheat11. However, the isolation and culture of protoplasts is not feasible in most plant species and the frequency of obtaining genome-edited plants through biolistic bombardment is relatively low. Here, we report a genome-editing system via direct delivery of Cas9-gRNA RNPs into plant zygotes. Cas9-gRNA RNPs were transfected into rice zygotes produced by in vitro fertilization of isolated gametes12 and the zygotes were cultured into mature plants in the absence of selection agents, resulting in the regeneration of rice plants with targeted mutations in around 14-64% of plants. This efficient plant-genome-editing system has enormous potential for the improvement of rice as well as other important crop species.


Assuntos
DNA de Plantas/genética , Edição de Genes/métodos , Oryza/genética , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Marcadores Genéticos/genética , Genoma de Planta/genética , Zigoto
10.
J Plant Res ; 130(5): 929-940, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28550412

RESUMO

Knowledge on the responses of woody plants to abiotic stress can inform strategies to breed improved tree varieties and to manage tree species for environmental conservation and the production of lignocellulosic biomass. In this study, we examined the expression patterns of poplar (Populus trichocarpa) genes encoding members of the sucrose nonfermenting1-related protein kinase 2 (SnRK2) family, which are core components of the abiotic stress response. The P. trichocarpa genome contains twelve SnRK2 genes (PtSnRK2.1- PtSnRK2.12) that can be divided into three subclasses (I-III) based on the structures of their encoded kinase domains. We found that PtSnRK2s are differentially expressed in various organs. In MS medium-grown plants, all of the PtSnRK2 genes were significantly upregulated in response to abscisic acid (ABA) treatment, whereas osmotic and salt stress treatments induced only some (four and seven, respectively) of the PtSnRK2 genes. By contrast, soil-grown plants showed increased expression of most PtSnRK2 genes under drought and salt treatments, but not under ABA treatment. In soil-grown plants, drought stress induced SnRK2 subclass II genes in all tested organs (leaves, stems, and roots), whereas subclass III genes tended to be upregulated in leaves only. These results suggest that the PtSnRK2 genes are involved in abiotic stress responses, are at least partially activated by ABA, and show organ-specific responses.


Assuntos
Ácido Abscísico/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Populus/enzimologia , Proteínas Quinases/genética , Sequência de Aminoácidos , Secas , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/fisiologia , Populus/efeitos dos fármacos , Populus/genética , Populus/fisiologia , Proteínas Quinases/metabolismo , Salinidade , Alinhamento de Sequência , Estresse Fisiológico , Sacarose/metabolismo
11.
Plant Biotechnol (Tokyo) ; 34(4): 203-206, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31275029

RESUMO

Developing methods to efficiently convert lignocellulosic polymers, i.e. cellulose, hemicellulose, and lignin into user-friendly carbon resources, such as fermentable sugars, is critical for improving plant biomass utilization. Here, we report the identification of genes that increase enzymatic saccharification efficiency in cultured Arabidopsis wood cells. We overexpressed a set of genes that were upregulated during the early stages of in vitro xylem vessel cell differentiation, including transcription factor and CAZYme genes, in Arabidopsis and tested their effects on enzymatic saccharification efficiency. Of the 96 transgenic seedlings sampled, 37 and 17 lines showed significant increases and decreases in glucose yields, respectively. Further analysis of 20 overexpression lines with high glucose yields in seedling samples indicated that compared to wild type, the glucose and xylose yields from inflorescence stem samples were higher in lines overexpressing genes encoding BETA-XYLOSIDASE 2, UDP-GLUCOSYL TRANSFERASE 88A1, AT3G15350 (a class GT14 glycosyltransferase protein), and the Dof-type transcription factor Dof4.6, whose detailed molecular functions have not yet been characterized. No apparent defect in growth or inflorescence stem structure was detected in these overexpression lines. Therefore, these four genes might represent novel factors that can be used to increase saccharification efficiency in wood tissues without negatively affecting total biomass production. Furthermore, our results confirm the validity of our screening strategy for isolating factors related to the saccharification efficiency of lignocellulosic biomass.

12.
J Plant Res ; 128(3): 371-80, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25740809

RESUMO

Small nuclear RNA (snRNA) is a class of non-coding RNAs that processes pre-mRNA and rRNA. Transcription of abundant snRNA species is regulated by the snRNA activating protein complex (SNAPc), which is conserved among multicellular organisms including plants. SRD2, a putative subunit of SNAPc in Arabidopsis thaliana, is essential for development, and the point mutation srd2-1 causes severe defects in hypocotyl dedifferentiation and de novo meristem formation. Based on phenotypic analysis of srd2-1 mutant plants, we previously proposed that snRNA content is a limiting factor in dedifferentiation in plant cells. Here, we performed functional complementation analysis of srd2-1 using transgenic srd2-1 Arabidopsis plants harboring SRD2 homologs from Populus trichocarpa (poplar), Nicotiana tabacum (tobacco), Oryza sativa (rice), the moss Physcomitrella patens, and Homo sapiens (human) under the control of the Arabidopsis SRD2 promoter. Only rice SRD2 suppressed the faulty tissue culture responses of srd2-1, and restore the snRNA levels; however, interestingly, all SRD2 homologs except poplar SRD2 rescued the srd2-1 defects in seedling development. These findings demonstrated that cell dedifferentiation and organogenesis induced during tissue culture require higher snRNA levels than does seedling development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Desdiferenciação Celular/genética , Organogênese Vegetal/genética , Proteínas de Plantas/genética , RNA Nuclear Pequeno/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bryopsida/genética , Teste de Complementação Genética , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Mutação , Oryza/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Regiões Promotoras Genéticas/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Nicotiana/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...