Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regen Ther ; 21: 52-61, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35765544

RESUMO

Adipose-derived stem cells (ASCs) are an attractive cell source for cell therapy. Despite the increasing number of clinical applications, the methodology for ASC isolation is not optimized for every individual. In this study, we developed an effective material to stabilize explant cultures from small-fragment adipose tissues. Methods: Polypropylene/polyethylene nonwoven sheets were coated with hydroxyapatite (HA) particles. Adipose fragments were then placed on these sheets, and their ability to trap tissue was monitored during explant culture. The yield and properties of the cells were compared to those of cells isolated by conventional collagenase digestion. Results: Hydroxyapatite-coated nonwovens immediately trapped adipose fragments when placed on the sheets. The adhesion was stable even in culture media, leading to cell migration and proliferation from the tissue along with the nonwoven fibers. A higher fiber density further enhanced cell growth. Although cells on nonwoven explants could not be fully collected with cell dissociation enzymes, the cell yield was significantly higher than that of conventional monolayer culture without impacting stem cell properties. Conclusions: Hydroxyapatite-coated nonwovens are useful for the effective primary explant culture of connective tissues without enzymatic cell dissociation.

2.
Regen Ther ; 20: 72-77, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35509265

RESUMO

Introduction: Cell therapy using adipose-derived mesenchymal stem cells (ASCs) is a promising avenue of regenerative medicine for the treatment of various diseases. It has been considered that ASCs exert their therapeutic effects through the secretion of multiple factors that are critical for tissue remodeling or the suppression of inflammation. Recently, conditioned medium (CM) from ASCs that contains a complex of secreted factors has received attention as a cost-effective alternative to cell therapy. Methods: We investigated the effects of CM obtained from ASCs (ASCs-CM) using human dermal fibroblasts (hDFs) and human epidermal keratinocytes with or without interleukin (IL)-1ß and examined mRNA levels of marker genes. We also examined alterations in cell proliferation and morphology of hDFs following treatment with ASCs-CM. We further investigated the effects of ASCs-CM treatment on prevention of skin inflammation using a mouse model. Results: In hDFs and human epidermal keratinocytes, the ASCs-CM treatment suppressed pro-inflammatory factors and enhanced regenerative and remodeling factors with or without interleukin (IL)-1ß exposure. The ASCs-CM treatment also enhanced cell proliferation of hDFs and prevented morphological changes in response to IL-1ß exposure. Furthermore, in a mouse model of skin inflammation, treatment with ASCs-CM reduced the inflammatory reactions, including redness and thickness. Conclusions: CM from ASCs may represent a potential alternative to ASC therapy for the treatment of inflammatory skin conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...