Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 353(6301): 759, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27540160

RESUMO

Yang et al suggest that the use of low-crystallinity poly(ethylene terephthalate) (PET) exaggerates our results. However, the primary focus of our study was identifying an organism capable of the biological degradation and assimilation of PET, regardless of its crystallinity. We provide additional PET depolymerization data that further support several other lines of data showing PET assimilation by growing cells of Ideonella sakaiensis.


Assuntos
Betaproteobacteria/enzimologia , Plásticos/metabolismo , Polietilenotereftalatos/metabolismo
2.
Int J Syst Evol Microbiol ; 66(8): 2813-2818, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27045688

RESUMO

A Gram-stain-negative, aerobic, non-spore-forming, rod-shaped bacterium, designed strain 201-F6T, was isolated from a microbial consortium that degrades poly(ethylene terephthalate) (PET) collected in Sakai city, Japan, and was characterized on the basis of a polyphasic taxonomic study. The cells were motile with a polar flagellum. The strain contained cytochrome oxidase and catalase. It grew within the pH range 5.5-9.0 (optimally at pH 7-7.5) and at 15-42 ºC (optimally at 30-37 ºC). The major isoprenoid quinone was ubiquinone with eight isoprene units (Q-8). C16 : 0, C17 : 0 cyclo, C18 :1ω7c and C12 : 0 2-OH were the predominant cellular fatty acids. The major polar lipids were phosphatidylethanolamine, lyso-phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The G+C content of genomic DNA was 70.4 mol%. Phylogenetic analysis using the 16S rRNA gene sequences showed that strain 201-F6T was affiliated to the genus Ideonella, and was closely related to Ideonella dechloratans LMG 28178T (97.7 %) and Ideonella azotifigens JCM 15503T (96.6 %). Strain 201-F6T could be clearly distinguished from the related species of the genus Ideonella by its physiological and biochemical characteristics as well as by its phylogenetic position and DNA-DNA relatedness. Therefore, the strain represents a novel species of the genus Ideonella, for which the name Ideonella sakaiensis sp. nov. (type strain 201-F6T=NBRC 110686T=TISTR 2288T) is proposed.


Assuntos
Betaproteobacteria/classificação , Consórcios Microbianos , Filogenia , Polietilenotereftalatos/química , Técnicas de Tipagem Bacteriana , Composição de Bases , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Japão , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
3.
Science ; 351(6278): 1196-9, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26965627

RESUMO

Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol.


Assuntos
Betaproteobacteria/enzimologia , Plásticos/metabolismo , Polietilenotereftalatos/metabolismo , Sequência de Aminoácidos , Recuperação e Remediação Ambiental , Enzimas/classificação , Enzimas/genética , Enzimas/metabolismo , Hidrólise , Consórcios Microbianos , Dados de Sequência Molecular , Ácidos Ftálicos/metabolismo , Filogenia , Reciclagem
4.
Biosci Biotechnol Biochem ; 77(9): 1867-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24018662

RESUMO

α-Amylases (EC 3.2.1.1) hydrolyze internal α-1,4-glucosidic linkages of starch and related glucans. Bacillus sp. AAH-31 produces an alkalophilic thermophilic α-amylase (AmyL) of higher molecular mass, 91 kDa, than typical bacterial α-amylases. In this study, the AmyL gene was cloned to determine its primary structure, and the recombinant enzyme, produced in Escherichia coli, was characterized. AmyL shows no hydrolytic activity towards pullulan, but the central region of AmyL (Gly395-Asp684) was similar to neopullulanase-like α-amylases. In contrast to known neopullulanase-like α-amylases, the N-terminal region (Gln29-Phe102) of AmyL was similar to carbohydrate-binding module family 20 (CBM20), which is involved in the binding of enzymes to starch granules. Recombinant AmyL showed more than 95% of its maximum activity in a pH range of 8.2-10.5, and was stable below 65 °C and from pH 6.4 to 11.9. The kcat values for soluble starch, γ-cyclodextrin, and maltotriose were 103 s(-1), 67.6 s(-1), and 5.33 s(-1), respectively, and the Km values were 0.100 mg/mL, 0.348 mM, and 2.06 mM, respectively. Recombinant AmyL did not bind to starch granules. But the substitution of Trp45 and Trp84, conserved in site 1 of CBM20, with Ala reduced affinity to soluble starch, while the mutations did not affect affinity for oligosaccharides. Substitution of Trp61, conserved in site 2 of CBM20, with Ala enhanced hydrolytic activity towards soluble starch, indicating that site 2 of AmyL does not contribute to binding to soluble long-chain substrates.


Assuntos
Bacillus/enzimologia , Temperatura , alfa-Amilases/química , alfa-Amilases/metabolismo , Sequência de Aminoácidos , Bacillus/genética , Sequência de Bases , Clonagem Molecular , Sequência Conservada , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência , alfa-Amilases/biossíntese , alfa-Amilases/genética
5.
Biosci Biotechnol Biochem ; 76(7): 1378-83, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22785486

RESUMO

α-Amylase (EC 3.2.1.1) hydrolyzes an internal α-1,4-glucosidic linkage of starch and related glucans. Alkalophilic liquefying enzymes from Bacillus species are utilized as additives in dishwashing and laundry detergents. In this study, we found that Bacillus sp. AAH-31, isolated from soil, produced an alkalophilic liquefying α-amylase with high thermostability. Extracellular α-amylase from Bacillus sp. AAH-31 (AmyL) was purified in seven steps. The purified enzyme showed a single band of 91 kDa on SDS-PAGE. Its specific activity of hydrolysis of 0.5% soluble starch was 16.7 U/mg. Its optimum pH and temperature were 8.5 and 70 °C respectively. It was stable in a pH range of 6.4-10.3 and below 60 °C. The calcium ion did not affect its thermostability, unlike typical α-amylases. It showed 84.9% of residual activity after incubation in the presence of 0.1% w/v of EDTA at 60 °C for 1 h. Other chelating reagents (nitrilotriacetic acid and tripolyphosphate) did not affect the activity at all. AmyL was fully stable in 1% w/v of Tween 20, Tween 80, and Triton X-100, and 0.1% w/v of SDS and commercial detergents. It showed higher activity towards amylose than towards amylopectin or glycogen. Its hydrolytic activity towards γ-cyclodextin was as high as towards short-chain amylose. Maltotriose was its minimum substrate, and maltose and maltotriose accumulated in the hydrolysis of maltooligosaccharides longer than maltotriose and soluble starch.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/isolamento & purificação , Microbiologia do Solo , alfa-Amilases/isolamento & purificação , Amilose/metabolismo , Bacillus/química , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Ácido Edético/química , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Octoxinol/química , Polissorbatos/química , Dodecilsulfato de Sódio/química , Amido/metabolismo , Especificidade por Substrato , alfa-Amilases/metabolismo , gama-Ciclodextrinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...