Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 75(1): H5-12, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20492178

RESUMO

Fresh and dried raspberries prepared by freeze drying (FD), microwave-vacuum (MIVAC), hot-air drying (HAD), and a combination of hot-air drying and microwave-vacuum (HAD/MIVAC) drying methods were evaluated for polyphenol retention, total polyphenol and anthocyanin contents, total antioxidant capacity, and antiadipogenic activity (the inhibition of fat cell development). Ellagic acid and quercetin were present in the largest concentrations in fresh and dehydrated raspberries. Dehydration led to a loss of polyphenols and anthocyanins and antioxidant capacity. Polyphenols (aglycone form) were retained in the greatest amount: 20% (freeze dried) to 30% (HAD/MIVAC) (fresh = 100%). A total of 30% of polyphenols (glycoside form) were retained in raspberries dried by the HAD/MIVAC methods with 5% of retention observed for raspberries dried by FD, HAD, or MIVAC. FD and MIVAC resulted in higher retention of anthocyanins (aglycone form) than other drying methods. It was also observed that antioxidant activity was reduced by dehydration. Adipogenesis was inhibited by polyphenolic glycosides (30%) and aglycones (30% to 40%) in fresh and HAD/MIVAC raspberries. Extracts from dried raspberries by HAD/MIVAC methods were relatively more effective at inhibiting adipogenesis compared to HAD and FD dried raspberries.


Assuntos
Antocianinas/análise , Antioxidantes/análise , Desidratação , Flavonoides/análise , Frutas/química , Fenóis/análise , Ar , Ácido Elágico/análise , Manipulação de Alimentos/métodos , Liofilização , Glicosídeos/análise , Hidrólise , Micro-Ondas , Polifenóis , Quercetina/análise , Soluções
2.
J Biomed Mater Res ; 28(7): 791-804, 1994 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8083247

RESUMO

A fracture-mechanics based study has performed to characterize the fracture toughness and rates of cyclic fatigue-crack growth of incipient flaws in prosthetic heart-valve components made of pyrolytic carbon-coated graphite. Such data are required to predict the safe structural lifetime of mechanical heart-valve prostheses using damage-tolerant analysis. Unlike previous studies where fatigue-crack propagation data were obtained using through-thickness, long cracks (approximately 2-20 mm long), growing in conventional (e.g., compact-tension) samples, experiments were performed on physically small cracks (approximately 100-600 microns long), initiated on the surface of the pyrolytic-carbon coating to simulate reality. Small-crack toughness results were found to agree closely with those measured conventionally with long cracks. However, similar to well-known observations in metal fatigue, it was found that based on the usual computations of the applied (far-field) driving force in terms of the maximum stress intensity, Kmax, small fatigue cracks grew at rates that exceeded those of long cracks at the same applied stress intensity, and displayed a negative dependency on Kmax; moreover, they grew at applied stress intensities less than the fatigue threshold value, below which long cracks are presumed dormant. To resolve this apparent discrepancy, it is shown that long and small crack results can be normalized, provided growth rates are characterized in terms of the total (near-tip) stress intensity (incorporating, for example, the effect of residual stress); with this achieved, in principle, either form of data can be used for life prediction of implant devices. Inspection of the long and small crack results reveals extensive scatter inherent in both forms of growth-rate data for the pyrolytic-carbon material.


Assuntos
Grafite , Próteses Valvulares Cardíacas , Teste de Materiais , Estresse Mecânico , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...