Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 215: 115733, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543347

RESUMO

Pregnane X receptor (PXR) is one of the key regulators of drug metabolism, gluconeogenesis, and lipid synthesis in the human liver. Activation of PXR by drugs such as rifampicin, simvastatin, and efavirenz causes adverse reactions such as drug-drug interaction, hyperglycemia, and dyslipidemia. The inhibition of PXR activation has merit in preventing such adverse events. Here, we demonstrated that bromodomain containing protein 9 (BRD9), a component of non-canonical brahma-related gene 1-associated factor (ncBAF), one of the chromatin remodelers, interacts with PXR. Rifampicin-mediated induction of CYP3A4 expression was attenuated by iBRD9, an inhibitor of BRD9, in human primary hepatocytes and CYP3A/PXR-humanized mice, indicating that BRD9 enhances the transcriptional activation of PXR in vitro and in vivo. Chromatin immunoprecipitation assay reveled that iBRD9 treatment resulted in attenuation of the rifampicin-mediated binding of PXR to the CYP3A4 promoter region, suggesting that ncBAF functions to facilitate the binding of PXR to its response elements. Efavirenz-induced hepatic lipid accumulation was attenuated by iBRD9 in C57BL/6J mice, suggesting that the inhibition of BRD9 would be useful to reduce the risk of efavirenz-induced hepatic steatosis. Collectively, we found that inhibitors of BRD9, a component of ncBAF that plays a role in assisting transactivation by PXR, would be useful to reduce the risk of PXR-mediated adverse reactions.


Assuntos
Citocromo P-450 CYP3A , Receptores de Esteroides , Humanos , Camundongos , Animais , Receptor de Pregnano X/genética , Ativação Transcricional , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Rifampina/farmacologia , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Hepatócitos/metabolismo , Lipídeos , Fatores de Transcrição/metabolismo
2.
Biochem Pharmacol ; 193: 114766, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536357

RESUMO

Methylation of adenosine at the N6 position to form N6-methyladenosine (m6A) is the most prevalent epitranscriptomic modification of mammalian mRNA. This modification is catalyzed by a methyltransferase-like 3 (METTL3)-METTL14 complex and is erased by demethylases such as fat mass and obesity-associated protein (FTO) or AlkB homolog 5 (ALKBH5). m6A modification regulates mRNA stability, nuclear export, splicing, and/or protein translation via recognition by reader proteins such as members of YT521-B homology (YTH) family. Carboxylesterase 2 (CES2) is a serine esterase responsible for the hydrolysis of drugs and endogenous substrates, such as triglycerides and diacylglycerides. Here, we examined the potential regulation of human CES2 expression by m6A modification. CES2 mRNA level was significantly increased by double knockdown of METTL3 and METTL14 but was decreased by knockdown of FTO or ALKBH5 in HepaRG and HepG2 cells, leading to changes in its protein level and hydrolase activity for 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11), suggesting that m6A modification negatively regulates CES2 expression. Consistent with the changes in CES2 expression, lipid accumulation in the cells was decreased by double knockdown of METTL3 and METTL14 but was increased by knockdown of FTO or ALKBH5. RNA immunoprecipitation assays using an anti-m6A antibody showed that adenosines in the 5'-untranslated region (UTR) and the last exon of CES2 are methylated. Luciferase assays revealed that YTHDC2, which degrades m6A-containing mRNA, downregulates CES2 expression by recognition of m6A in the 5'-UTR of CES2. Collectively, we demonstrated that m6A modification has a great impact on the regulation of CES2, affecting pharmacokinetics, drug response and lipid metabolism.


Assuntos
Adenosina/análogos & derivados , Carboxilesterase/metabolismo , Adenosina/genética , Adenosina/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Carboxilesterase/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Irinotecano/farmacologia , Metabolismo dos Lipídeos/genética , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Drug Metab Pharmacokinet ; 37: 100367, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33515843

RESUMO

The pregnane X receptor (PXR) is one of the major transcription factors that regulate the expression of different drug-metabolizing enzymes and transporters. Adenosine-to-inosine RNA editing, the most frequent nucleotide conversion on RNA, which is catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes, may modulate gene expression and function. Here, we investigated the potential regulation of human PXR expression by adenosine-to-inosine RNA editing. Knockdown of ADAR1 increased PXR mRNA level, and the knockdown of ADAR1 or ADAR2 significantly increased PXR protein level in HepaRG cells. In HepG2 cells, the knockdown of ADAR1 or ADAR2 significantly increased PXR mRNA and protein levels. The increase in the PXR protein by ADAR1 knockdown resulted in increased cytochrome P450 3A4 (CYP3A4) transactivity and CYP3A4 and UDP-glucuronosyltransferase 1A1 (UGT1A1) expression. A reporter assay revealed that the 3'-untranslated region (UTR) of PXR mRNA, especially from +3371 to +3440, is responsible for the ADAR-mediated post-transcriptional control of PXR expression, despite the lack of RNA edited sites in this region. Collectively, we found that PXR is negatively regulated by ADAR1 via an indirect mechanism, which facilitates the degradation of PXR mRNA. We could demonstrate that ADAR1 can cause interindividual variability in hepatic drug metabolism potencies.


Assuntos
Adenosina Desaminase/metabolismo , Receptor de Pregnano X/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Células Hep G2 , Humanos , Receptor de Pregnano X/metabolismo
4.
Biochem Pharmacol ; 171: 113697, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31706844

RESUMO

The methylation of adenosines at the N6 position (m6A formation) is the most prevalent type of RNA modification in humans. This modification is mediated by methyltransferase like 3 (METTL3)-METTL14 complex, and the methyl group can be removed by RNA demethylases including fat mass and obesity-associated (FTO) and AlkB homolog 5. The formed m6A is recognized by reader proteins such as members of the YT521-B homology (YTH) family, resulting in changes in the splicing, nuclear export, and decay of RNA or translation. In this study, we examined the impact of m6A modification on the expression of drug-metabolizing P450 isoforms. By treatment with 3-deazaadenosine, an inhibitor of RNA methylation, CYP1A2, CYP2B6, and CYP2C8 levels were significantly increased (1.6-fold, 2.2-fold, and 2.7-fold, respectively) in HepaRG cells. In subsequent experiments, we focused on CYP2C8, which showed the largest increase. Consistent with the increase in the mRNA level, CYP2C8 protein level and activity were significantly increased by treatment with 3-deazaadenosine. The CYP2C8 expression levels and activities in HepaRG and Huh-7 cells were increased by knockdown of METTL3/14, whereas they were decreased by knockdown of FTO, suggesting that m6A modification downregulates CYP2C8 expression. With an RNA immunoprecipitation assay using an anti-m6A antibody, it was revealed that the adenosines in the 5'-UTR and the last exon of CYP2C8 are methylated in HepaRG cells and human liver samples. It was demonstrated that YTHDC2, which is known to degrade m6A-containing mRNA, downregulates CYP2C8 expression. In conclusion, we found a novel post-transcriptional regulation mechanism in which the YTHDC2 promotes CYP2C8 mRNA degradation via recognizing the m6A in CYP2C8 mRNA, which is installed by METTL3/14 and removed by FTO.


Assuntos
Adenosina/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica/genética , Fígado/metabolismo , Regiões 5' não Traduzidas/genética , Linhagem Celular Tumoral , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2C8/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Metilação/efeitos dos fármacos , Metiltransferases/genética , Metiltransferases/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tubercidina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...