Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 358: 142156, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679172

RESUMO

Water outages caused by elevated ammonium (NH4+-N) levels are a prevalent problem faced by conventional raw water treatment plants in developing countries. A treatment solution requires a short hydraulic retention time (HRT) to overcome nitrification rate limitation in oligotrophic conditions. In this study, the performance of polluted raw water treatment using a green downflow sponge biofilm (DSB) technology was evaluated. We operated two DSB reactors, DSB-1 and DSB-2 under different NH4+-N concentration ranges (DSB-1: 3.2-5.0 mg L-1; DSB-2: 1.7-2.6 mg L-1) over 360 days and monitored their performance under short HRT (60 min, 30 min, 20 min, and 15 min). The experimental results revealed vertical segregation of organic removal in the upper reactor depths and nitrification in the lower depths. Under the shortest HRT of 15 min, both DSB reactors achieved stable NH4+-N and chemical oxygen demand removal (≥95%) and produced minimal effluent nitrite (NO2--N). DSB system could facilitate complete NH4+-N oxidation to nitrate (NO3--N) without external aeration energy requirement. The 16S rRNA sequencing data revealed that nitrifying bacteria Nitrosomonas and Nitrospira in the reactor were stratified. Putative comammox bacteria with high ammonia affinity was successfully enriched in DSB-2 operating at a lower NH4+-N loading rate, which is advantageous in oligotrophic treatment. This study suggests that a high hydraulic rate DSB system with efficient ammonia removal could incorporate ammonia treatment capability into polluted raw water treatment process and ensure safe water supply in many developing countries.


Assuntos
Biofilmes , Reatores Biológicos , Nitrificação , Reatores Biológicos/microbiologia , Compostos de Amônio/metabolismo , Purificação da Água/métodos , Cinética , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Microbiota , Nitritos/metabolismo , Bactérias/metabolismo , Bactérias/genética , RNA Ribossômico 16S/genética , Nitratos/metabolismo
2.
PLoS One ; 18(9): e0291742, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37768925

RESUMO

Water quality parameters influence the abundance of pathogenic bacteria. The genera Aeromonas, Arcobacter, Klebsiella, and Mycobacterium are among the representative pathogenic bacteria identified in wastewater. However, information on the correlations between water quality and the abundance of these bacteria, as well as their reduction rate in existing wastewater treatment facilities (WTFs), is lacking. Hence, this study aimed to determine the abundance and reduction rates of these bacterial groups in WTFs. Sixty-eight samples (34 influent and 34 non-disinfected, treated, effluent samples) were collected from nine WTFs in Japan and Thailand. 16S rRNA gene amplicon sequencing analysis revealed the presence of Aeromonas, Arcobacter, and Mycobacterium in all influent wastewater and treated effluent samples. Quantitative real-time polymerase chain reaction (qPCR) was used to quantify the abundance of Aeromonas, Arcobacter, Klebsiella pneumoniae species complex (KpSC), and Mycobacterium. The geometric mean abundances of Aeromonas, Arcobacter, KpSC, and Mycobacterium in the influent wastewater were 1.2 × 104-2.4 × 105, 1.0 × 105-4.5 × 106, 3.6 × 102-4.3 × 104, and 6.9 × 103-5.5 × 104 cells mL-1, respectively, and their average log reduction values were 0.77-2.57, 1.00-3.06, 1.35-3.11, and -0.67-1.57, respectively. Spearman's rank correlation coefficients indicated significant positive or negative correlations between the abundances of the potentially pathogenic bacterial groups and Escherichia coli as well as water quality parameters, namely, chemical/biochemical oxygen demand, total nitrogen, nitrate-nitrogen, nitrite-nitrogen, ammonium-nitrogen, suspended solids, volatile suspended solids, and oxidation-reduction potential. This study provides valuable information on the development and appropriate management of WTFs to produce safe, hygienic water.


Assuntos
Aeromonas , Arcobacter , Mycobacterium , Purificação da Água , Águas Residuárias , Arcobacter/genética , Klebsiella pneumoniae/genética , Klebsiella/genética , Aeromonas/genética , RNA Ribossômico 16S/genética , Escherichia coli/genética , Mycobacterium/genética
3.
Water Sci Technol ; 87(9): 2223-2232, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37186626

RESUMO

Removal of sulfide by gas stripping using biogas produced in an internal phase-separated reactor (IPSR) was evaluated during anaerobic treatment. The IPSR consisted of upper and lower segments with a gas-liquid partitioning (GLP) valve between the sections. Wastewater was fed to the upper segment in the first stage and then to the lower segment in the second stage. The GLP valve separated the liquid phase from the gaseous phase and supplied biogas from the lower segment to the upper segment. The IPSR and a control reactor were fed with synthetic wastewater and operated in parallel under an organic loading rate of 12 kg COD/(m3 day) at 35 °C. The sulfide concentration increased to 400-600 mg S/L, which is above the previously reported 50% inhibition level for methanogenic activity. The IPSR showed higher H2S removal performance than the control reactor and removed approximately twice the H2S as the control reactor at 400 mg S/L, indicating that it can be used for the stable treatment of wastewater containing high concentrations of sulfide.


Assuntos
Águas Residuárias , Purificação da Água , Anaerobiose , Biocombustíveis , Eliminação de Resíduos Líquidos , Reatores Biológicos , Sulfetos , Gases
4.
Appl Microbiol Biotechnol ; 107(9): 3047-3056, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37000227

RESUMO

Tetramethylammonium hydroxide (TMAH) is a known toxic chemical used in the photolithography process of semiconductor photoelectronic processes. Significant amounts of wastewater containing TMAH are discharged from electronic industries. It is therefore attractive to apply anaerobic treatment to industrial wastewater containing TMAH. In this study, a novel TMAH-degrading methanogenic archaeon was isolated from the granular sludge of a psychrophilic upflow anaerobic sludge blanket (UASB) reactor treating synthetic wastewater containing TMAH. Although the isolate (strain NY-STAYD) was phylogenetically related to Methanomethylovorans uponensis, it was the only isolated Methanomethylovorans strain capable of TMAH degradation. Strain NY-STAYD was capable of degrading methylamine compounds, similar to the previously isolated Methanomethylovorans spp. While the strain was able to grow at temperatures ranging from 15 to 37°C, the cell yield was higher at lower temperatures. The distribution of archaeal cells affiliated with the genus Methanomethylovorans in the original granular sludge was investigated by fluorescence in situ hybridization (FISH) using specific oligonucleotide probe targeting 16S rRNA. The results demonstrated that the TMAH-degrading cells associated with the genus Methanomethylovorans were not intermingled with other microorganisms but rather isolated on the granule's surface as a lone dominant archaeon. KEY POINTS: • A TMAH-degrading methanogenic Methanomethylovorans strain was isolated • This strain was the only known Methanomethylovorans isolate that can degrade TMAH • The highest cell yield of the isolate was obtained at psychrophilic conditions.


Assuntos
Archaea , Euryarchaeota , Archaea/genética , Archaea/metabolismo , Águas Residuárias , Esgotos/química , Hibridização in Situ Fluorescente , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Reatores Biológicos , Euryarchaeota/metabolismo , Methanosarcinaceae/genética , Anaerobiose , Eliminação de Resíduos Líquidos/métodos
5.
J Hazard Mater ; 440: 129764, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35986941

RESUMO

Monoethanolamine (MEA), a toxic organic chemical, is widely used in industries and is found in their wastewater. Anaerobic MEA degradation is an appropriate strategy to reduce energy and cost for treatment. Industry wastewaters also contain sulfate, but information on the effects of sulfate on MEA degradation is limited. Here, an up-flow anaerobic sludge blanket (UASB) for MEA-containing wastewater treatment was operated under psychrophilic conditions (18-20 ºC) to investigate the effects of sulfate on the microbial characteristics of the retained sludge. To acclimatize the sludge, the proportion of MEA in the influent (containing sucrose, acetate, and propionate) was increased from 15% to 100% of total COD (1500 mg L-1); sulfate was then added to the influent. The COD removal efficiency remained above 95% despite the increase in MEA and sulfate. However, granular sludge disintegration was observed when sulfate was increased from 20 to 330 mg L-1. Batch tests revealed that propionate and acetate were produced as the metabolites of MEA degradation. In response to sulfate acclimation, methane-producing activities for propionate and hydrogen declined, while sulfate-reducing activities for MEA, propionate, and hydrogen increased. Accordingly, acclimation and changes in dominant microbial groups promoted the acetogenic reaction of propionate by sulfate reduction.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Etanolamina , Hidrogênio , Metano/metabolismo , Propionatos , Sacarose , Sulfatos , Eliminação de Resíduos Líquidos
6.
Artigo em Inglês | MEDLINE | ID: mdl-35535707

RESUMO

In the production of natural rubber, formate or acetate is added to the latex solution to coagulate the rubber; therefore, the wastewater contains high concentrations of organic acids, requiring the application of anaerobic treatment technology. In this study, a two-phase continuous flow experiment using a laboratory-scale upflow anaerobic sludge blanket (UASB) was conducted to investigate the influence of formate inflow on the microbial and physical characteristics of the retained granular sludge. In phase 1, acetate-based wastewater was used as feed, while in phase 2, formate-based wastewater was used as feed. In phase 1, the UASB exhibited high COD removal efficiency (97.2%); in addition, the retained sludge showed increased methane production from acetate and proliferation of acetate-utilizing Methanosaeta species. In phase 2, the UASB performed as well as phase 1, with 98.2% COD removal efficiency. Microbial community structure analysis confirmed that relatives of Methanobacterium formicicum present in the retained sludge were responsible for the degradation of formate in phase 2. However, decreased diameter and slight deterioration of granular sludge settleability were observed. In conclusion, formate inflow has low risk of interference with the process performance of the UASB, but it has negative effects on the physical properties of the granular sludge.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Reatores Biológicos/microbiologia , Formiatos , Metano/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Águas Residuárias/química
7.
Sci Total Environ ; 832: 155067, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35395310

RESUMO

Pollution in raw water poses increasing threats to safe water supply in many developing countries. Therefore, a comprehensive water quality assessment is essential to provide various stakeholders the information to deal with this problem. This study applies chemometrics to interpret a recent 10-year water quality data from three major river basins (Selangor River basin, Langat River basin, and Klang River basin) frequented by water supply disruptions in Selangor, Malaysia. We present the application of selected chemometrics approaches, namely agglomerative hierarchical cluster analysis, principal component analysis, factor analysis and Man-Kendall trend analysis. The results showed three spatial groups of monitoring stations with similar land use practices and pollution characteristics. Besides spatial differences, periodic variations were observed when similar pollutants exhibited different pollution loads during rainy and dry periods. We found that nitrogen species, total suspended solids, and dissolved solids represented the major pollution loads in the studied basins. The results further confirmed a significant increasing trend in ammonia pollution. Our study demonstrates how ammonia pollutant is likely to pose a threat to water supply and highlights the vulnerability of Selangor's water resource system to water pollution. The results of this study could facilitate decision making towards more holistic strategies, specifically, incorporating ammonia treatment facilities into the conventional water treatment plant will help achieve smooth water supply operations.


Assuntos
Rios , Poluentes Químicos da Água , Amônia , Monitoramento Ambiental/métodos , Humanos , Malásia , Poluentes Químicos da Água/análise , Poluição da Água/análise , Qualidade da Água , Abastecimento de Água
8.
Environ Technol ; 43(17): 2581-2589, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33576727

RESUMO

Sediment microbial fuel cells (SMFCs) have served as an alternative technique to suppress phosphorus release from lake sediments to water bodies and thus mitigate eutrophication. However, the phosphorus regulation mechanism remains unclear. The purpose of this research was to understand the electrochemical influence of an SMFC on the phosphorus concentration in interstitial water. In this study, a lab-scale SMFC was applied to acetate-spiked sediments (ace+) and unspiked sediments (sed) with closed-circuit (CC)/open-circuit (OC) columns, and the circuitry was switched to investigate the relationship between electron transfer and phosphorus concentration. The dissolved total phosphorus (DTP) concentration in the sediment interstitial water in CC columns significantly decreased to below 0.1 mg/L, whereas the DTP in OC columns remained high for nine weeks. After switching the circuit, the DTP in OC→CC columns dropped but that in CC→OC columns increased within one week. At the end of the experimental period, the DTP concentrations in CC/sed, CC/ace+, OC/sed, and OC/ace+ columns were 0.10 ± 0.02, 0.03 ± 0.00, 0.82 ± 0.01, and 1.66 ± 0.12 mg/L, respectively. The respective estimated anode capacitances of those columns were 2.05 ± 0.49, 5.15 ± 0.14, 0.72 ± 0.19, and 0.71 ± 0.12 nF. We concluded that the phosphorus may have been electrochemically attracted and retained on the anode in the sediment because the adsorbed DTP contents and the increased anode capacitances were strongly correlated. Thus, SMFCs can be used for suppressing phosphorus release from eutrophic lake sediments.


Assuntos
Fontes de Energia Bioelétrica , Eutrofização , Sedimentos Geológicos , Fósforo , Poluentes Químicos da Água , China , Sedimentos Geológicos/química , Lagos , Fósforo/análise , Água/química , Poluentes Químicos da Água/análise
9.
Microbiol Resour Announc ; 10(46): e0098421, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34792378

RESUMO

Information about sediment microbiota affected by sediment microbial fuel cells (SMFC) is limited. A laboratory-scale SMFC was applied to a eutrophic lake sediment under closed-circuit/open-circuit conditions. We analyzed the prokaryotes in the sediment adhering to the anode material. The archaeal family Methanoperedenaceae was a predominant group under closed-circuit conditions.

10.
J Water Health ; 19(4): 657-670, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34371501

RESUMO

The management of pathogenic bacteria in waterways is a public health issue. Here, we investigated the concentrations of potentially pathogenic bacteria, Arcobacter spp. and Campylobacter spp., and Escherichia coli, by quantifying species-specific genes in surface water samples from canals and the Chao Phraya River from June 2017 to June 2018 in Bangkok, Thailand. We assessed the relationship between the specific bacterial concentrations, water quality, and seasonal changes. Arcobacter spp. were detected at high density in all samples and showed seasonal fluctuations according to analyses based on 16S rDNA and the invasion gene ciaB. High levels of 16S rDNA and dut gene of E. coli were detected in the polluted drainage canals. A high correlation was observed between E. coli and chemical and biochemical oxygen demand (COD and BOD), suggesting that untreated domestic wastewater was the source of the E. coli. In contrast, Arcobacter spp. were detected with high density even in water samples with relatively low COD, suggesting that Arcobacter spp. are more likely than E. coli to survive in the water environment. The analysis of 16S rDNA and ciaB gene sequence analyses indicated that the Arcobacter spp. isolated from the drainage canals were A. butzleri and A. cryaerophilus.


Assuntos
Arcobacter , Arcobacter/genética , Escherichia coli/genética , Rios , Especificidade da Espécie , Tailândia
11.
Appl Environ Microbiol ; 87(20): e0116721, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34319794

RESUMO

A method named sequence-specific capture of oligonucleotide probes (SCOPE) was developed for quantification of microbial rRNA molecules in a multiplex manner. In this method, a molecular weight cutoff membrane (MWCOM) was used for the separation of fluorescence-labeled oligonucleotide probes hybridized with rRNA from free unhybridized probes. To demonstrate proof of concept, probes targeting bacteria or archaea at different taxonomic levels were prepared and were hybridized with rRNAs. The hybridization stringency was controlled by adjusting reaction temperature and urea concentration in the mixture. Then, the mixture was filtered through the MWCOM. The rRNA and hybridized probes collected on the MWCOM were recovered and quantified using a spectrophotometer and fluorospectrometer, respectively. The method showed high accuracy in detecting specific microbial rRNA in a defined nucleic acid mixture. Furthermore, the method was capable of simultaneous detection and quantification of multiple target rRNAs in a sample with sensitivity up to a single-base mismatch. The SCOPE method was tested and benchmarked against reverse transcription-quantitative PCR (RT-qPCR) for the quantification of Bacteria, Archaea, and some key methanogens in anaerobic sludge samples. It was observed that the SCOPE method produced more reliable and coherent results. Thus, the SCOPE method allows simple and rapid detection and quantification of target microbial rRNAs for environmental microbial population analysis without any need for enzymatic reactions. IMPORTANCE Microorganisms play integral roles in the Earth's ecosystem. Microbial populations and their activities significantly affect the global nutrient cycles. Quantification of key microorganisms provides important information that is required to understand their roles in the environment. Sequence-based analysis of microbial population is a powerful tool, but it provides information only on relative abundance of microorganisms. Hence, the development of a simpler and quick method for the quantification of microorganisms is necessary. To address the shortcomings of a variety of molecular methods reported so far, we developed a simple, rapid, accurate, and multiplexed microbial rRNA quantification method to evaluate the abundance of specific microbial populations in complex ecosystems. This method demonstrated high specificity, reproducibility, and applicability to such samples. The method is useful for quantitative detection of particular microbial members in the environment.


Assuntos
Archaea/genética , Bactérias/genética , Sondas de Oligonucleotídeos , RNA Ribossômico 16S/genética , Membranas Artificiais , Microbiota , Peso Molecular
12.
Artigo em Inglês | MEDLINE | ID: mdl-33657962

RESUMO

In this study, a lab-scale upflow anaerobic sludge blanket (UASB) reactor was applied to the treatment of artificial electronics industry wastewater containing tetramethylammonium-hydroxide (TMAH), monoethanolamine (MEA), and isopropyl-alcohol (IPA) in order to evaluate process performance and degradation properties. During 800 days of operation, 96% efficiency of chemical oxygen demand (COD) removal was stably achieved at an organic loading rate of 8.5 kgCOD/m3/day at 18-19 °C. MEA degradation, carried out by acid-forming eubacteria, was confirmed within a week. The physical properties of the retained granular sludge were degraded by feeding with TMAH wastewater, but maintained by feeding with MEA wastewater due to an accumulation of species from the genus Methanosaeta and family Geobacteraceae. Analysis of the microbial community structure via SEM and 16S rRNA genes showed a proliferation of Methanomethylovorans-like cells and Methanosaeta-like cells at the surface and in the core of the granular sludge with TMAH, MEA and IPA acclimation. Furthermore, a batch degradation experiment confirmed that process inhibition due to increasing chemical concentration was relatively stronger for TMAH than for MEA or IPA. Thus, controlling the TMAH concentration of the influent to below 1 gCOD/L will be important for the stable treatment of electronics industry wastewater by UASB technology.


Assuntos
Reatores Biológicos/microbiologia , Eletrônica , Microbiota/fisiologia , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , 2-Propanol/análise , 2-Propanol/isolamento & purificação , 2-Propanol/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Etanolamina/análise , Etanolamina/isolamento & purificação , Etanolamina/metabolismo , Compostos de Amônio Quaternário/análise , Compostos de Amônio Quaternário/isolamento & purificação , Compostos de Amônio Quaternário/metabolismo , Águas Residuárias/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-32253973

RESUMO

In this study, a pilot-scale down-flow hanging sponge (DHS) reactor was operated in the community plant of Bangkok for the treatment of domestic wastewater (COD 285 mg/L, BOD 105 mg/L) collected by separate sewer to evaluate the reactor's feasibility as a decentralized treatment system. The DHS reactor was operated for 600 days at ambient temperatures of 25-30 °C, both with constant flow conditions and with fluctuating flow conditions that simulated wastewater discharge patterns of the community. The results indicate that under constant flow at an HRT of 5 h, the volumetric loading rates of 0.36 kgBOD/m3-sponge/day and 0.16 kgN/m3-sponge/day were the optimum operational conditions of the DHS reactor in order to satisfy the effluent discharge standards. The DHS achieved removal rates of 89, 95, 91 and 90% for COD, BOD, TSS and NH4-N. Under the fluctuating flow condition, improvement of denitrification was confirmed at volumetric loading rates of 0.50 kgBOD/m3-sponge/day and 0.18 kgN/m3-sponge/day. The fluctuating flow of wastewater positively affects retained sludge activities in terms of homogenizing sludge concentration and stimulating oxygen uptake rates. These results suggest that the DHS reactor can be applied as a decentralized treatment system for domestic wastewater with fluctuating flow rates in tropical regions.


Assuntos
Reatores Biológicos , Águas Residuárias/química , Purificação da Água/métodos , Análise da Demanda Biológica de Oxigênio , Desnitrificação , Projetos Piloto , Esgotos/microbiologia , Tailândia
14.
Water Res ; 155: 288-299, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30852316

RESUMO

The stable operation of the partial nitritation and anammox (PN/A) process is a challenge in the treatment of low-strength ammonia wastewater like sewage mainstream. This study demonstrated the feasibility of achieving stable operation in the treatment of 50 mg/L ammonia wastewater with a micro granule-based PN/A reactor. The long-term operation results showed nitrogen removal efficiencies of 71.8 ±â€¯9.9% were stably obtained under a relatively short hydraulic retention time (HRT) of 2 h. The analysis on the physicochemical properties of the granules indicated most of the granules were in a size in a range of 265-536 µm, and the elementary composition of the granules was determined to be CH1.61O0.61N0.17S0.01P0.03. The microbial analysis revealed Candidatus Kuenenia stuttgartiensis anammox bacteria and Nitrosomonas-like AOB were the two most dominant bacteria with 27.6% and 10.5% abundance, respectively, both of which formed spatially syntrophic co-immobilization within the micro-granules. The ex-situ activity tests showed the activity of NOB was well limited through DO regulation in the reactor. These results provide an alternative PN/A process configuration for low-strength wastewater treatment by sustaining microstate granules. Optimization of the nitrogen sludge loading rate and DO regulation are important for the successful performance.


Assuntos
Compostos de Amônio , Águas Residuárias , Amônia , Reatores Biológicos , Nitrogênio , Oxirredução
15.
Bioresour Technol ; 193: 110-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26119052

RESUMO

Samples taken from the full-scale and lab-scale anaerobic digesters feeding with different organic solid waste were investigated with assessment of the substrate effects. To understand the substrate effects on the microbial community diversity, heterogeneity, and functional structure, twelve samples were analyzed by constructing 16S rRNA gene clone libraries and statistical analysis. Microbial diversity varied according to substrate types and operating parameters. With acetoclastic methanogen of genus Methanosaeta predominated in full scale and Methanosarcina predominated in the lab-scale digesters, a significant difference archaeal communities were found. Principal component analysis clearly indicates that both bacterial and archaeal communities create independent clusters according to substrate types. However, the relationship between acetogenic bacteria and the acetoclastic methanogens had a similar variation tends in most of full-scale and lab-scale reactors. Canonical correlation analysis and variance partitioning analysis implied that bacterial and archaeal community variations were significantly affected by substrate and the operation conditions.


Assuntos
Anaerobiose/genética , Bactérias/genética , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Euryarchaeota/genética , Metano/metabolismo , RNA Ribossômico 16S/genética , Resíduos Sólidos
16.
Waste Manag ; 43: 114-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26054964

RESUMO

While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000mg/L with free ammonia (FA) 2000mg/L compared to 16,000mg/L (FA1500mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gVSin in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.


Assuntos
Esterco , Methanomicrobiaceae/fisiologia , Methanosarcina/fisiologia , Amônia/química , Anaerobiose , Animais , Reatores Biológicos , Galinhas , Ácidos Graxos Voláteis/química , Fermentação , Gases , Concentração de Íons de Hidrogênio , Hidrólise , Metano , Filogenia
17.
Bioresour Technol ; 101(14): 5180-5, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20307974

RESUMO

A down-flow hanging sponge (DHS) reactor, constructed by connecting three identical treatment units in series, was fed with highly saline artificial coke-plant wastewater containing 1400 mg L(-1) of phenol in terms of chemical oxygen demand (COD) and 500 mg-NL(-1) of ammonium nitrogen. The COD was removed by the 1st unit, achieving 92% removal at an average COD loading rate of 3.0 kg-COD m(-3)d(-1) for all units, with oxidation of ammonium nitrogen occurring primarily in the two downstream units. Microbial assays of the different units of the reactor revealed greater numbers of nitrifying bacteria in the 2nd and 3rd units than in the 1st unit, corresponding with the observed ammonium oxidation pattern of the reactor. These findings suggest that a succession of microflora was successfully established along the DHS.


Assuntos
Biodegradação Ambiental , Nitrogênio/química , Compostos Orgânicos/química , Oxigênio/química , Compostos de Amônio Quaternário/química , Bactérias/metabolismo , Reatores Biológicos , Clonagem Molecular , DNA Ribossômico , Fenol/química , Esgotos/química , Esgotos/microbiologia , Fatores de Tempo , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...