Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nucl Med ; 64(1): 153-158, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35798557

RESUMO

We acquired brain 18F-FDG and 18F-flutemetamol PET images using a time-of-flight system dedicated to the head (dhPET) and a conventional whole-body PET/CT (wbPET) system and evaluated the clinical superiority of dhPET over wbPET. Methods: There were 18 subjects for the 18F-FDG PET study and 17 subjects for the 18F-flutemetamol PET study. 18F-FDG PET images were first obtained using wbPET, followed by dhPET. 18F-flutemetamol PET images were first obtained using wbPET, followed by dhPET. Images acquired using dhPET and wbPET were compared by visual inspection, voxelwise analysis, and SUV ratio (SUVR). Results: All 18F-FDG and 18F-flutemetamol images acquired using dhPET were judged as visually better than those acquired using wbPET. The voxelwise analysis demonstrated that accumulations in the cerebellum, in the lateral occipital cortices, and around the central sulcus area in dhPET 18F-FDG images were lower than those in wbPET 18F-FDG images, whereas accumulations around the ventricle systems were higher in dhPET 18F-FDG images than those in wbPET 18F-FDG images. Accumulations in the cerebellar dentate nucleus, in the midbrain, in the lateral occipital cortices, and around the central sulcus area in dhPET images were lower than those in wbPET images, whereas accumulations around the ventricle systems were higher in dhPET 18F-flutemetamol images than those in wbPET 18F-flutemetamol images. The mean cortical SUVRs of 18F-FDG and 18F-flutemetamol dhPET images were significantly higher than those of 18F-FDG and 18F-flutemetamol wbPET images, respectively. Conclusion: The dhPET images had better image quality by visual inspection and higher SUVRs than wbPET images. Although there were several regional accumulation differences between dhPET and wbPET images, understanding this phenomenon will enable full use of the features of this dhPET system in clinical practice.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem
2.
EJNMMI Phys ; 9(1): 88, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525103

RESUMO

BACKGROUND: This study evaluated the physical performance of a positron emission tomography (PET) system dedicated to the head and breast according to the National Electrical Manufacturers Association (NEMA) NU2-2012 standard. METHODS: The spatial resolution, sensitivity, scatter fraction, count rate characteristics, corrections for count losses and randoms, and image quality of the system were determined. All measurements were performed according to the NEMA NU2-2012 acquisition protocols, but image quality was assessed using a brain-sized phantom. Furthermore, scans of the three-dimensional (3D) Hoffmann brain phantom and mini-Derenzo phantom were acquired to allow visual evaluation of the imaging performance for small structures. RESULTS: The tangential, radial, and axial full width at half maximum (FWHM) at a 10-mm offset in half the axial field of view were measured as 2.3, 2.5, and 2.9 mm, respectively. The average system sensitivity at the center of the field of view and at a 10-cm radial offset was 7.18 and 8.65 cps/kBq, respectively. The peak noise-equivalent counting rate was 35.2 kcps at 4.8 kBq/ml. The corresponding scatter fraction at the peak noise-equivalent counting rate was 46.8%. The peak true rate and scatter fraction at 8.6 kBq/ml were 127.8 kcps and 54.3%, respectively. The percent contrast value for a 10-mm sphere was approximately 50%. On the 3D Hoffman brain phantom image, the structures of the thin layers composing the phantom were visualized on the sagittal and coronal images. On the mini-Derenzo phantom, each of the 1.6-mm rods was clearly visualized. CONCLUSION: Taken together, these results indicate that the head- and breast-dedicated PET system has high resolution and is well suited for clinical PET imaging.

3.
Ann Nucl Med ; 36(11): 998-1006, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36167889

RESUMO

OBJECTIVES: This study evaluates the phantom attenuation correction (PAC) method as an alternative to maximum-likelihood attenuation correction factor (ML-ACF) correction in time-of-flight (TOF) brain positron emission tomography (PET) studies. METHODS: In the PAC algorithm, a template emission image [Formula: see text] and a template attenuation coefficient image [Formula: see text] are prepared as a data set based on phantom geometry. Position-aligned attenuation coefficient image [Formula: see text] is derived by aligning [Formula: see text] using parameters that match the template emission image [Formula: see text] to measured emission image [Formula: see text]. Then, attenuation coefficient image [Formula: see text] combined with a headrest image is used for scatter and attenuation correction in the image reconstruction. To evaluate the PAC algorithm as an alternative to ML-ACF, Hoffman 3D brain and cylindrical phantoms were measured to obtain the image quality indexes of contrast and uniformity. These phantoms were also wrapped with a radioactive sheet to obtain attenuation coefficient images using ML-ACF. Emission images were reconstructed with attenuation correction by PAC and ML-ACF, and the results were compared using contrast and uniformity as well as visual assessment. CT attenuation correction (CT-AC) was also applied as a reference. RESULTS: The contrast obtained by ML-ACF was slightly overestimated due to its unique experimental condition for applying ML-ACF in Hoffman 3D brain phantom but the uniformity was almost equivalent among ML-ACF, CT-AC, and PAC. PAC showed reasonable result without overestimation compared to ML-ACF and CT-AC. CONCLUSIONS: PAC is an attenuation correction method that can ensure the performance in phantom test, and is considered to be a reasonable alternative to clinically used ML-ACF-based attenuation correction.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Algoritmos , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...