Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(5)2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790256

RESUMO

Much research has been conducted to determine how hair regeneration is regulated, as this could provide therapeutic, cosmetic, and even psychological interventions for hair loss. The current study focused on the hair growth effect and effective utilization of fatty oil obtained from Bryde's whales through a high-throughput DNA microarray approach in conjunction with immunohistochemical observations. The research also examined the mechanisms and factors involved in hair growth. In an experiment using female C57BL/6J mice, the vehicle control group (VC: propylene glycol: ethanol: water), the positive control group (MXD: 3% minoxidil), and the experimental group (WO: 20% whale oil) were topically applied to the dorsal skin of the mouse. The results showed that 3% MXD and 20% WO were more effective than VC in promoting hair growth, especially 20% WO. Furthermore, in hematoxylin and eosin-stained dorsal skin tissue, an increase in the number of hair follicles and subcutaneous tissue thickness was observed with 20% WO. Whole-genome transcriptome analysis also confirmed increases for 20% WO in filaggrin (Flg), a gene related to skin barrier function; fibroblast growth factor 21 (Fgf21), which is involved in hair follicle development; and cysteine-rich secretory protein 1 (Crisp1), a candidate gene for alopecia areata. Furthermore, the results of KEGG pathway analysis indicated that 20% WO may have lower stress and inflammatory responses than 3% MXD. Therefore, WO is expected to be a safe hair growth agent.


Assuntos
Cabelo , Óleos , Animais , Feminino , Camundongos , Biologia Computacional/métodos , Proteínas Filagrinas , Perfilação da Expressão Gênica/métodos , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Cabelo/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Minoxidil/administração & dosagem , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Pele/metabolismo , Pele/efeitos dos fármacos , Baleias , Óleos/administração & dosagem
2.
J Mol Neurosci ; 74(1): 25, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386221

RESUMO

Galanin-like peptide (GALP) is a neuropeptide that was first isolated and identified from the porcine hypothalamus. Studies have described an anti-obesity effect of GALP. We previously found that intracerebroventricular administration of GALP in mice resulted in an increase in respiratory exchange rate 12 to 16 h later. GALP may also affect glucose metabolism, but the detailed mechanism has not been elucidated. In this study, we investigated the effects of GALP on glucose and lipid metabolism in the liver. Nine-week-old male C57BL / 6 J mice were administered a single intracerebroventricular dose of saline or GALP and dissected 16 h later. There were no significant between-group differences in body weight and blood glucose levels. With regard to gene and protein expression, G6Pase associated with hepatic gluconeogenesis was significantly reduced in the GALP group. In addition, the hepatokines selenoprotein P and fetuin-A, which induce insulin resistance in the liver, were significantly decreased in the GALP group. These results suggest that intracerebroventricular administration of GALP decreases the expression of key hepatokines, thereby enhancing glucose metabolism.


Assuntos
Peptídeo Semelhante a Galanina , Masculino , Animais , Camundongos , Suínos , Camundongos Endogâmicos C57BL , Peptídeo Semelhante a Galanina/farmacologia , Fígado , Peso Corporal , Glucose
3.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958806

RESUMO

The aim of this research was to test the efficacy and potential clinical application of intranasal administration of galanin-like peptide (GALP) as an anti-obesity treatment under the hypothesis that GALP prevents obesity in mice fed a high-fat diet (HFD). Focusing on the mechanism of regulation of lipid metabolism in peripheral tissues via the autonomic nervous system, we confirmed that, compared with a control (saline), intranasally administered GALP prevented further body weight gain in diet-induced obesity (DIO) mice with continued access to an HFD. Using an omics-based approach, we identified several genes and metabolites in the liver tissue of DIO mice that were altered by the administration of intranasal GALP. We used whole-genome DNA microarray and metabolomics analyses to determine the anti-obesity effects of intranasal GALP in DIO mice fed an HFD. Transcriptomic profiling revealed the upregulation of flavin-containing dimethylaniline monooxygenase 3 (Fmo3), metallothionein 1 and 2 (Mt1 and Mt2, respectively), and the Aldh1a3, Defa3, and Defa20 genes. Analysis using the DAVID tool showed that intranasal GALP enhanced gene expression related to fatty acid elongation and unsaturated fatty acid synthesis and downregulated gene expression related to lipid and cholesterol synthesis, fat absorption, bile uptake, and excretion. Metabolite analysis revealed increased levels of coenzyme Q10 and oleoylethanolamide in the liver tissue, increased levels of deoxycholic acid (DCA) and taurocholic acid (TCA) in the bile acids, increased levels of taurochenodeoxycholic acid (TCDCA), and decreased levels of ursodeoxycholic acid (UDCA). In conclusion, intranasal GALP administration alleviated weight gain in obese mice fed an HFD via mechanisms involving antioxidant, anti-inflammatory, and fatty acid metabolism effects and genetic alterations. The gene expression data are publicly available at NCBI GSE243376.


Assuntos
Dieta Hiperlipídica , Peptídeo Semelhante a Galanina , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Peptídeo Semelhante a Galanina/metabolismo , Peptídeo Semelhante a Galanina/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma , Administração Intranasal , Obesidade/etiologia , Obesidade/genética , Fígado/metabolismo , Aumento de Peso , Metaboloma , Metabolismo dos Lipídeos , Ácidos Graxos/metabolismo , Camundongos Endogâmicos C57BL
4.
Nutr Res ; 118: 128-136, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37660501

RESUMO

Many studies have investigated the beneficial effects of n-3 polyunsaturated fatty acids, such as their potential for lowering lipid levels and reducing diabetes risk. However, few studies have specifically examined docosapentaenoic acid (DPA), an n-3 polyunsaturated fatty acid with limited availability in its pure form. We hypothesized that DPA would have lipid-lowering effects and improve insulin resistance in KK/Ta mice. To test our hypothesis, 7-week-old KK/Ta mice were fed a high-fat diet for 12 weeks to induce obesity before being divided into 3 groups and fed an experimental diet for 10 weeks. The experimental diets were: LSO, using lard and safflower oil as fat sources; SO, in which lard in the LSO diet was replaced with safflower oil; and DPA, in which lard in the LSO diet was replaced with DPA oil. After 10 weeks, plasma triglyceride and total cholesterol concentrations were significantly decreased in the DPA group, but not in the SO group. Sterol regulatory element-binding protein-1 and stearoyl-CoA desaturase-1 gene expressions involved in fatty acid synthesis in the liver were significantly lower in the DPA group compared with the LSO group. Plasma glucose concentrations were significantly decreased in both the SO group and the DPA group compared with the LSO group, whereas plasma insulin concentrations were significantly decreased in the DPA group alone. These results indicate that DPA has plasma lipid-lowering and hypoglycemic effects, possibly from suppression of fatty acid synthesis in the liver.


Assuntos
Diabetes Mellitus , Ácidos Graxos Ômega-3 , Animais , Camundongos , Glicemia/metabolismo , Óleo de Cártamo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Diabetes Mellitus/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos
5.
Respir Physiol Neurobiol ; 316: 104137, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37595771

RESUMO

OBJECTIVE: Evidence suggest that the renin-angiotensin system (RAS) is activated in people with asthma, although its pathophysiological role is unclear. Angiotensin-converting enzyme 2 (ACE2) is the major enzyme that converts angiotensin II to angiotensin 1-7 (Ang-1-7), and is also known as a receptor of SARS-CoV-2. The current study was conducted to identify the change in RAS-related gene expression in airways of a murine asthma model. METHODS: The ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. Twenty-four hours after the last antigen challenge, the main bronchial smooth muscle (BSM) tissues were isolated. RESULTS: The KEGG pathway analysis of differentially expressed genes in our published microarray data revealed a significant change in the RAS pathway in the antigen-challenged mice. Quantitative RT-PCR analyses showed significant increases in the angiotensin II-generating enzymes (Klk1, Klk1b3 and Klk1b8) and a significant decrease in Ace2. Surprisingly, ELISA analyses revealed a significant increase in Ang-1-7 levels in bronchoalveolar lavage (BAL) fluids of the antigen-challenged animals, while no significant change in angiotensin II was observed. Application of Ang-1-7 to the isolated BSMs had no effect on their isometrical tension. CONCLUSION: The expression of Ace2 was downregulated in the BSMs of OA-challenged mice, while Klk1, Klk1b3 and Klk1b8 were upregulated. Despite the downregulation of ACE2, the level of its enzymatic product, Ang-1-7, was increased in the inflamed airways, suggesting the existence of an unknown ACE2-independent pathway for Ang-1-7 production. The functional role of Ang-1-7 in the airways remains unclear.


Assuntos
Asma , COVID-19 , Animais , Camundongos , Sistema Renina-Angiotensina , Angiotensina II , Enzima de Conversão de Angiotensina 2 , Regulação para Baixo , SARS-CoV-2 , Ovalbumina , Expressão Gênica
6.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36902003

RESUMO

Sweat plays a critical role in human body, including thermoregulation and the maintenance of the skin environment and health. Hyperhidrosis and anhidrosis are caused by abnormalities in sweat secretion, resulting in severe skin conditions (pruritus and erythema). Bioactive peptide and pituitary adenylate cyclase-activating polypeptide (PACAP) was isolated and identified to activate adenylate cyclase in pituitary cells. Recently, it was reported that PACAP increases sweat secretion via PAC1R in mice and promotes the translocation of AQP5 to the cell membrane through increasing intracellular [Ca2+] via PAC1R in NCL-SG3 cells. However, intracellular signaling mechanisms by PACAP are poorly clarified. Here, we used PAC1R knockout (KO) mice and wild-type (WT) mice to observe changes in AQP5 localization and gene expression in sweat glands by PACAP treatment. Immunohistochemistry revealed that PACAP promoted the translocation of AQP5 to the lumen side in the eccrine gland via PAC1R. Furthermore, PACAP up-regulated the expression of genes (Ptgs2, Kcnn2, Cacna1s) involved in sweat secretion in WT mice. Moreover, PACAP treatment was found to down-regulate the Chrna1 gene expression in PAC1R KO mice. These genes were found to be involved in multiple pathways related to sweating. Our data provide a solid basis for future research initiatives in order to develop new therapies to treat sweating disorders.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Suor , Camundongos , Humanos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Suor/metabolismo , Sudorese , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Hipófise/metabolismo
7.
Cell Tissue Res ; 392(3): 705-714, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36918428

RESUMO

Aquaporins (AQP) are a family of channel proteins expressed in the cell membranes of many tissue types. As water channels, they enable the selective permeation of water molecules and thus play an important role in water transport through the plasma membrane. There are numerous AQP sub-types, among which AQP5 is expressed in the salivary glands. The expression and localization of AQP5 in different salivary gland cells of animal models during fetal development and after birth have enabled the physiological functions of AQP5 to be elucidated, but subsequent changes in the adult phase are unknown. It is known that saliva production tends to decrease with age, but it is unclear how AQP5 activity and function changes developmentally, from young to old including gender differences. In the present study, we sampled the parotid, submandibular, and sublingual glands from young (8 weeks old) and aged (12 months old) mice of both sexes to study the effects of age- and sex-related differences in AQP5 expression. Positive fluorescence immunostaining was detected in the membranes of cells from all gland types, and this was enhanced in juvenile mice from both sexes. Western blot analyses revealed that AQP5 expression levels tended to decrease with age in both male and female animals. Conversely, AQP5 gene expression levels did not change significantly with aging, but were found to be high in submandibular gland cells of both sexes, in parotid gland cells of older female mice, and in the sublingual gland cells of young male mice.


Assuntos
Aquaporina 5 , Glândulas Salivares , Animais , Feminino , Masculino , Camundongos , Aquaporina 5/metabolismo , Glândulas Salivares/metabolismo , Glândula Sublingual/metabolismo , Glândula Submandibular/metabolismo , Água
8.
Molecules ; 28(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36838553

RESUMO

The biological and psychological importance of hair is recognized worldwide. Molecules that can promote the activation of hair follicle stem cells and the initiation of the growth phase have been subjects of research. Clarifying how hair regeneration is regulated may help to provide hair loss treatments, including cosmetic and even psychological interventions. We examined the hair-growing effects of a cell extract (CE) obtained from cactus Notocactus ottonis by the cold vacuum extraction protocol, by investigating its hair-growing effects, relevant mechanisms, and potential factors therein. Using male C57BL/6 mice, vehicle control (VC: propylene glycol: ethanol: water), MXD (minoxidil, positive control), and N. ottonis CE (N-CE, experimental) were applied topically to the backs of mice. The results showed that MXD and N-CE were more effective in promoting hair growth than VC. An increase in number of hair follicles was observed with N-CE in hematoxylin-eosin-stained skin tissue. The metabolite composition of N-CE revealed the presence of growth-promoting factors. Using mouse back whole-skin tissue samples, whole-genome DNA microarray (4 × 44 K, Agilent) and proteomics (TMT-based liquid chromatography-tandem mass spectrometry) analyses were carried out, suggesting the molecular factors underlying hair-promoting effects of N-CE. This study raises the possibility of using the newly described N. ottonis CE as a hair-growth-promoting agent.


Assuntos
Cabelo , Extratos Vegetais , Camundongos , Animais , Extratos Celulares/farmacologia , Extratos Vegetais/química , Camundongos Endogâmicos C57BL , Folículo Piloso/metabolismo
9.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835581

RESUMO

The study aimed to understand mechanism/s of neuronal outgrowth in the rat adrenal-derived pheochromocytoma cell line (PC12) under pituitary adenylate cyclase-activating polypeptide (PACAP) treatment. Neurite projection elongation was suggested to be mediated via Pac1 receptor-mediated dephosphorylation of CRMP2, where GSK-3ß, CDK5, and Rho/ROCK dephosphorylated CRMP2 within 3 h after addition of PACAP, but the dephosphorylation of CRMP2 by PACAP remained unclear. Thus, we attempted to identify the early factors in PACAP-induced neurite projection elongation via omics-based transcriptomic (whole genome DNA microarray) and proteomic (TMT-labeled liquid chromatography-tandem mass spectrometry) analyses of gene and protein expression profiles from 5-120 min after PACAP addition. The results revealed a number of key regulators involved in neurite outgrowth, including known ones, called 'Initial Early Factors', e.g., genes Inhba, Fst, Nr4a1,2,3, FAT4, Axin2, and proteins Mis12, Cdk13, Bcl91, CDC42, including categories of 'serotonergic synapse, neuropeptide and neurogenesis, and axon guidance'. cAMP signaling and PI3K-Akt signaling pathways and a calcium signaling pathway might be involved in CRMP2 dephosphorylation. Cross-referencing previous research, we tried to map these molecular components onto potential pathways, and we may provide important new information on molecular mechanisms of neuronal differentiation induced by PACAP. Gene and protein expression data are publicly available at NCBI GSE223333 and ProteomeXchange, identifier PXD039992.


Assuntos
Fosfatidilinositol 3-Quinases , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Ratos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Células PC12 , Glicogênio Sintase Quinase 3 beta/genética , Fosfatidilinositol 3-Quinases/genética , Proteômica , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Crescimento Neuronal
10.
Molecules ; 27(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35164374

RESUMO

The present research investigates the tuber proteome of the 'medicinal' plant Jerusalem artichoke (abbreviated as JA) (Helianthus tuberosus L.) using a high-throughput proteomics technique. Although JA has been historically known to the Native Americans, it was introduced to Europe in the late 19th century and later spread to Japan (referred to as 'kiku-imo') as a folk remedy for diabetes. Genboku Takahashi research group has been working on the cultivation and utilization of kiku-imo tuber as a traditional/alternative medicine in daily life and researched on the lowering of blood sugar level, HbA1c, etc., in human subjects (unpublished data). Understanding the protein components of the tuber may shed light on its healing properties, especially related to diabetes. Using three commercially processed JA tuber products (dried powder and dried chips) we performed total protein extraction on the powdered samples using a label-free quantitate proteomic approach (mass spectrometry) and catalogued for the first time a comprehensive protein list for the JA tuber. A total of 2967 protein groups were identified, statistically analyzed, and further categorized into different protein classes using bioinformatics techniques. We discussed the association of these proteins to health and disease regulatory metabolism. Data are available via ProteomeXchange with identifier PXD030744.


Assuntos
Helianthus/metabolismo , Tubérculos/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos
11.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054857

RESUMO

Dry eye disease (DED) is caused by a reduction in the volume or quality of tears. The prevalence of DED is estimated to be 100 million in the developed world. As aging is a risk factor for DED, the prevalence of DED is expected to grow at a rapid pace in aging populations, thus creating an increased need for new therapies. This review summarizes DED medications currently in clinical use. Most current medications for DED focus on stimulating tear secretion, mucin secretion, or suppressing inflammation, rather than simply replenishing the ocular surface with moisture to improve symptoms. We recently reported that the neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) induces tear secretion and suppresses corneal injury caused by a reduction in tears. Moreover, it has been reported that a PACAP in water and a 0.9% saline solution at +4 °C showed high stability and achieved 80-90% effectiveness after 2 weeks of treatment. These results reveal PACAP as a candidate DED medication. Further research on the clinical applications of PACAP in DED is necessary.


Assuntos
Síndromes do Olho Seco/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Animais , Síndromes do Olho Seco/patologia , Humanos , Modelos Biológicos , Soluções Oftálmicas/farmacologia , Soluções Oftálmicas/uso terapêutico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Transdução de Sinais/efeitos dos fármacos , Lágrimas/efeitos dos fármacos
12.
Peptides ; 146: 170647, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34562532

RESUMO

The process of sweating plays an important role in the human body, including thermoregulation and maintenance of the environment and health of the skin. It is known that the conditions of hyperhidrosis and anhidrosis are caused by abnormalities in sweat secretion and can result in severe skin conditions such as pruritus and erythema, which significantly reduce the patient's quality of life. However, there are many aspects of the signaling mechanisms in the process of sweating that have not been clarified, and no effective therapies or therapeutic agents have yet been discovered. Previously, it was reported that pituitary adenylate cyclase-activating polypeptide (PACAP) promotes sweating, but details of the underlying mechanism has not been clarified. We used immortalized human eccrine gland cells (NCL-SG3 cell) to investigate how sweat secretion is induced by PACAP. Intracellular Ca2+ levels were increased in these cells following their exposure to physiological concentrations of PACAP. Intracellular Ca2+ was not elevated when cells were concomitantly treated with PA-8, a specific PAC1-R antagonist, suggesting that PAC1-R is involved in the elevation of intracellular Ca2+ levels in response to PACAP treatment. Furthermore, immunocytochemistry experiments showed that aquaporin-5 was translocated from the cytoplasm to the cell membrane by PACAP. These results suggest that PACAP acts on eccrine sweat glands to promote sweat secretion by translocation of aquaporin-5 to the cell membrane in response to increased levels of intracellular Ca2+. These findings also provide a solid basis for future research initiatives to develop new therapies to treat sweating disorders.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Glândulas Sudoríparas/efeitos dos fármacos , Aquaporina 5/metabolismo , Cálcio/metabolismo , Linhagem Celular Transformada , Humanos , Transporte Proteico , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Glândulas Sudoríparas/citologia , Glândulas Sudoríparas/metabolismo
13.
Neural Plast ; 2021: 2522454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422037

RESUMO

The present research investigates the molecular mechanism of neurite outgrowth (protrusion elongation) under pituitary adenylate cyclase-activating polypeptide (PACAP) 38 treatments using a rat adrenal-derived pheochromocytoma cell line-PC12. This study specifically looks into the regulation of PACAP38-induced collapsing response mediator protein 2 (CRMP2) previously identified in a mouse brain ischemia model and which could be recovered by PACAP38 treatment. Previously, DNA microarray analysis revealed that PACAP 38-mediated neuroprotection involved not only CRMP2 but also pathways related to glycogen synthase kinase-3ß (GSK-3ß) and other signaling components. Thus, to clarify whether CRMP2 acts directly on PACAP38 or through GSK-3ß as part of the mechanism of PACAP38-induced neurite outgrowth, we observed neurite outgrowth in the presence of GSK-3ß inhibitors and activators. PC12 cells were treated with PACAP38 being added to the cell culture medium at concentrations of 10-7 M, 10-8 M, and 10-9 M. Post PACAP38 treatment, immunostaining was used to confirm protrusion elongation of the PC12 cells, while RT-PCR, two-dimensional gel electrophoresis in conjunction with Western blotting, and inhibition experiments were performed to confirm the expression of the PACAP gene, its receptors, and downstream signaling components. Our data show that neurite protrusion elongation by PACAP38 (10-7 M) in PC12 cells is mediated through the PAC1-R receptor as demonstrated by its suppression by a specific inhibitor PA-8. Inhibitor experiments suggested that PACAP38-triggered neurite protrusion follows a GSK-3ß-regulated pathway, where the AKT and cAMP/ERK pathways are involved and where the inhibition of Rho/Roc could enhance neurite protrusion under PACAP38 stimulation. Although we could not yet confirm the exact role and position of CRMP2 in PACAP38-mediated PC12 cell elongation, it appears that its phosphorylation and dephosphorylation have a correlation with the neurite protrusion elongation through the interplay of CDK5, which needs to be investigated further.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Células PC12 , Ratos , Transdução de Sinais/efeitos dos fármacos
14.
Am J Physiol Lung Cell Mol Physiol ; 319(5): L786-L793, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877227

RESUMO

Bronchomotor tone is regulated by contraction and relaxation of airway smooth muscle (ASM). A weakened ASM relaxation might be a cause of airway hyperresponsiveness (AHR), a characteristic feature of bronchial asthma. Pituitary adenylyl cyclase-activating polypeptide (PACAP) is known as a mediator that causes ASM relaxation. To date, whether or not the PACAP responsiveness is changed in asthmatic ASM is unknown. The current study examined the hypothesis that relaxation induced by PACAP is reduced in bronchial smooth muscle (BSM) of allergic asthma. The ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. Twenty-four hours after the last antigen challenge, the main bronchial smooth muscle (BSM) tissues were isolated. Tension study showed a BSM hyperresponsiveness to acetylcholine in the OA-challenged mice. Both quantitative RT-PCR and immunoblot analyses revealed a significant decrease in PAC1 receptor expression in BSMs of the diseased mice. Accordingly, in the antigen-challenged group, the PACAP-induced PAC1 receptor-mediated BSM relaxation was significantly attenuated, whereas the relaxation induced by vasoactive intestinal polypeptide was not changed. These findings suggest that the relaxation induced by PACAP is impaired in BSMs of experimental asthma due to a downregulation of its binding partner PAC1 receptor. Impaired BSM responsiveness to PACAP might contribute to the AHR in asthma.


Assuntos
Asma/metabolismo , Brônquios/metabolismo , Músculo Liso/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Tensoativos/metabolismo , Animais , Hiper-Reatividade Brônquica/metabolismo , Camundongos , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/fisiologia , Hipersensibilidade Respiratória/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
15.
Plant Signal Behav ; 14(10): e1644594, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31342859

RESUMO

The present research examines the possibility of finding bio-molecular compounds from the double cherry blossom (termed as 'Gosen-Sakura' of Gosen-city, Niigata-prefecture, Japan) leaves, which have been long used in the preparation of the traditional Japanese sweet (wagashi) - 'sakura-mochi'. Based on its indicated anti-microbial properties historically, our study provides a new low temperature vacuum extraction method for extracting 'near natural form of water soluble leaf (cell) extracts from the Gosen-Sakura, and demonstrates the presence of some 'novel' compound(s) with anti-tumor cell lines proliferation inhibitory affects through the MTT assay. To our knowledge, no reports exist on the sakura tree 'leaf (cell) extracts' inhibiting tumor cell line growth. We further examined and compared the effects of known compounds with anti-tumor activity, coumarin and benzyl alcohol with Gosen-Sakura leaf extract; results lead us to hypothesize that the Gosen-Sakura leaf extract contains substance(s) other than the above two known compounds, with antitumor effect. Additionally, we speculate on the underlying mechanism of action of the Gosen-Sakura leaf extract by targeting cell division at the point of DNA synthesis and causing apoptosis. In conclusion, we present scientific evidence on the presence of certain 'novel' biomolecule(s), with anti-tumor activity, in the Gosen-Sakura leaf which has been long used in Japanese sweet - the 'sakura-mochi'.


Assuntos
Temperatura Baixa , Flores/química , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Prunus/química , Vácuo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Extratos Vegetais/farmacologia
16.
J Mol Neurosci ; 68(3): 420-426, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29931503

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide/glucagon/secretin family of peptides. PACAP and its three receptor subtypes are expressed in neural tissues and in the eye, including the retina, cornea, and lacrimal gland. PACAP is known to exert pleiotropic effects on the central nervous system and in eye tissues where it plays important roles in protecting against dry eye. This review provides an overview of current knowledge regarding dry eye symptoms in aged animals and humans and the protective effects, mechanisms of action. In addition, we also refer to the development of a new preventive/therapeutic method by PACAP of dry eye patients.


Assuntos
Síndromes do Olho Seco/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Animais , Síndromes do Olho Seco/etiologia , Humanos
17.
Curr Pharm Des ; 24(33): 3926-3933, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30398112

RESUMO

Galanin-like peptide (GALP) is composed of 60 amino acid residues and its sequence is highly homologous across species. GALP is produced in the hypothalamic arcuate nucleus and has diverse physiological effects such as the regulation of feeding, energy metabolism, and reproductive behavior. GALP-containing neurons express leptin receptors and these neurons form networks in the hypothalamus that contain various peptides that regulate feeding behavior. Recent studies have revealed that GALP has a central anti-obesity action in addition to its role in food intake regulation. Furthermore, we have found that the respiratory quotient declines shortly after administration of GALP into the lateral ventricle. This suggests that lipid metabolism is accelerated by GALP administration, and identifies a new physiological action for this peptide. In this review article, we summarize our recent research focusing on the mechanism whereby GALP regulates feeding and energy metabolism. We concentrate on the mechanism of regulation of lipid metabolism in peripheral tissues via the autonomic nervous system and outline the effectiveness of the nasal administration of GALP and basic research towards its clinical application.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Metabolismo Energético , Comportamento Alimentar , Peptídeo Semelhante a Galanina/uso terapêutico , Obesidade/tratamento farmacológico , Animais , Fármacos Antiobesidade/administração & dosagem , Fármacos Antiobesidade/metabolismo , Peptídeo Semelhante a Galanina/administração & dosagem , Peptídeo Semelhante a Galanina/metabolismo , Humanos , Obesidade/metabolismo
18.
Int J Mol Sci ; 19(10)2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30301147

RESUMO

Prostaglandin D2 (PGD2) is one of the key lipid mediators of allergic airway inflammation, including bronchial asthma. However, the role of PGD2 in the pathogenesis of asthma is not fully understood. In the present study, the effect of PGD2 on smooth muscle contractility of the airways was determined to elucidate its role in the development of airway hyperresponsiveness (AHR). In isolated bronchial smooth muscles (BSMs) of naive mice, application of PGD2 (10-9⁻10-5 M) had no effect on the baseline tension. However, when the tissues were precontracted partially with 30 mM K⁺ (in the presence of 10-6 M atropine), PGD2 markedly augmented the contraction induced by the high K⁺ depolarization. The PGD2-induced augmentation of contraction was significantly inhibited both by 10-6 M laropiprant (a selective DP1 antagonist) and 10-7 M Y-27632 (a Rho-kinase inhibitor), indicating that a DP1 receptor-mediated activation of Rho-kinase is involved in the PGD2-induced BSM hyperresponsiveness. Indeed, the GTP-RhoA pull-down assay revealed an increase in active form of RhoA in the PGD2-treated mouse BSMs. On the other hand, in the high K⁺-depolarized cultured human BSM cells, PGD2 caused no further increase in cytosolic Ca2+ concentration. These findings suggest that PGD2 causes RhoA/Rho-kinase-mediated Ca2+ sensitization of BSM contraction to augment its contractility. Increased PGD2 level in the airways might be a cause of the AHR in asthma.


Assuntos
Brônquios/metabolismo , Cálcio/metabolismo , Citosol/metabolismo , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Prostaglandina D2/farmacologia , Animais , Atropina/farmacologia , Hiper-Reatividade Brônquica/metabolismo , Humanos , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Potássio/farmacologia , Cultura Primária de Células , Receptores de Prostaglandina/efeitos dos fármacos
19.
Biomed Res ; 39(4): 215-222, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30101841

RESUMO

Previous studies have shown that dissolved substances in some natural hot springs have analgesic/anti-nociceptive and anti-inflammatory actions. However, the mechanisms underlying how such dissolved substances exert these actions are not fully understood. In the present study on mice, we examined the analgesic/anti-nociceptive and anti-inflammatory properties of a mineral cream containing natural hot spring ingredients. The anti-nociceptive effects of the mineral cream were assessed by using the von Frey test. Application of the mineral cream to the hind paw of mice produced a significant anti-nociceptive effect compared to control. The anti-nociceptive effects of the mineral cream were also assessed following the injection of complete Freund's adjuvant (CFA) into the hind paws of mice after pre-treatment for one or four weeks with the mineral cream. Histological experiments with light microscopy showed that the mineral cream did not reduce inflammation caused by the CFA treatment. In addition, the mineral cream did not inhibit oxidative stress as evidenced by increased levels of oxidative metabolites (d-ROMs) and biological anti-oxidant potential (BAP). These results suggest that the mineral cream does not exert a protective effect against inflammation, and that the constituents of the mineral cream may produce their anti-nociceptive effects transdermally via different mechanisms including the nervous system.


Assuntos
Analgésicos/farmacologia , Balneologia , Minerais/farmacologia , Creme para a Pele/farmacologia , Analgésicos/farmacocinética , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Minerais/farmacocinética , Creme para a Pele/farmacocinética
20.
Curr Pharm Des ; 23(25): 3751-3756, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28325141

RESUMO

Galanin-like peptide (GALP) is a neuropeptide involved in the regulation of food intake behavior, body weight and energy metabolism. In previous studies, we demonstrated that the intranasal administration of GALP has weight loss effects, although the mechanism of this action was not clarified. The aim of this study was to demonstrate the functional significance of GALP on lipid metabolism in the liver. Mice were fed a high fat diet to cause diet-induced obesity (DIO) and then administered GALP intranasally for 2 weeks (experimental), or vehicle (control). Body weights, along with lipid levels in the plasma and liver, and lipid metabolism-related gene expression in the liver were subsequently measured. Body weight gain was decreased by the GALP treatment compared to the control group. Lipid droplet levels in hepatocytes and hepatic triglyceride levels were decreased in the GALP group compared with the vehicle group, whereas hepatic fatty acid ß-oxidation-related gene mRNA levels were increased in the GALP group. These results suggest that the intranasal administration of GALP has an inhibitory effect on lipid accumulation in the liver.


Assuntos
Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Peptídeo Semelhante a Galanina/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Obesidade/tratamento farmacológico , Administração Intranasal , Animais , Peso Corporal/fisiologia , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...