Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38895404

RESUMO

The retromer complex mediates retrograde transport of protein cargos from endosomes to the trans-Golgi network (TGN). γ-secretase is a multisubunit protease that cleaves the transmembrane domain of its target proteins. Mutations in genes encoding subunits of retromer or γ-secretase can cause familial Alzheimer disease (AD) and other degenerative neurological diseases. It has been reported that retromer interacts with γ-secretase, but the consequences of this interaction are not known. Here, we report that retromer-mediated retrograde protein trafficking in cultured human epithelial cells is impaired by inhibition of γ-secretase activity or by genetic elimination of γ-secretase. γ-secretase inhibitor XXI and knockout of PS1, the catalytic subunit of γ-secretase, inhibit endosome to TGN trafficking of retromer-dependent retrograde cargos, divalent metal transporter 1 isoform II (DMT1-II), cation-independent mannose-6-phosphate receptor (CIMPR), and shiga toxin. Trafficking of retromer-independent cargos, such as cholera toxin and a CIMPR mutant that does not bind to retromer was not affected by γ-secretase inhibition. XXI treatment and PS1 KO inhibit interaction of γ-secretase with retromer but do not inhibit the association of cargo with retromer or with γ-secretase in intact cells. Similarly, these treatments do not affect the level of Rab7-GTP, which regulates retromer-cargo interaction. These results suggest that the γ-secretase-retromer interaction facilitates retromer-mediated retrograde trafficking.

2.
Sci Adv ; 9(3): eadc9830, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662862

RESUMO

During entry, human papillomavirus (HPV) traffics from the cell surface to the endosome and then to the trans-Golgi network (TGN) and Golgi apparatus. HPV must transit across the TGN/Golgi and exit these compartments to reach the nucleus to cause infection, although how these steps are accomplished is unclear. Combining cellular fractionation, unbiased proteomics, and gene knockdown strategies, we identified the coat protein complex I (COPI), a highly conserved protein complex that facilitates retrograde trafficking of cellular cargos, as a host factor required for HPV infection. Upon TGN/Golgi arrival, the cytoplasmic segment of HPV L2 binds directly to COPI. COPI depletion causes the accumulation of HPV in the TGN/Golgi, resembling the fate of a COPI binding-defective L2 mutant. We propose that the L2-COPI interaction drives HPV trafficking through the TGN and Golgi stacks during virus entry. This shows that an incoming virus is a cargo of the COPI complex.


Assuntos
Complexo I de Proteína do Envoltório , Papillomavirus Humano , Infecções por Papillomavirus , Internalização do Vírus , Humanos , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Papillomavirus Humano/fisiologia , Infecções por Papillomavirus/virologia , Transporte Proteico
3.
ACS Cent Sci ; 7(3): 467-475, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33786375

RESUMO

Starting from our previous finding of 14 known drugs as inhibitors of the main protease (Mpro) of SARS-CoV-2, the virus responsible for COVID-19, we have redesigned the weak hit perampanel to yield multiple noncovalent, nonpeptidic inhibitors with ca. 20 nM IC50 values in a kinetic assay. Free-energy perturbation (FEP) calculations for Mpro-ligand complexes provided valuable guidance on beneficial modifications that rapidly delivered the potent analogues. The design efforts were confirmed and augmented by determination of high-resolution X-ray crystal structures for five analogues bound to Mpro. Results of cell-based antiviral assays further demonstrated the potential of the compounds for treatment of COVID-19. In addition to the possible therapeutic significance, the work clearly demonstrates the power of computational chemistry for drug discovery, especially FEP-guided lead optimization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...