Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Methods ; 2(11): 100337, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36452871

RESUMO

Human intestinal organoids (HIOs) derived from human pluripotent stem cells (hPSCs) hold great promise for translational medical applications. A common method to obtain HIOs has been to harvest floating hindgut spheroids arising from hPSCs. As this technique is elegant but burdensome due to the complex protocol and line-to-line variability, a more feasible method is desired. Here, we establish a robust differentiation method into suspension-cultured HIOs (s-HIOs) by seeding dissociated cells on a spheroid-forming plate. This protocol realizes the reliable generation of size-controllable spheroids. Under optimized conditions in a rotating bioreactor, the generated spheroids quickly grow and mature into large s-HIOs with supporting mesenchyme. Upon mesenteric transplantation, s-HIOs further mature and develop complex tissue architecture in vivo. This method demonstrates that intestinal tissue can be generated from iPSC-derived HIOs via suspension induction and bioreactor maturation, establishing a reliable culture platform with wide applications in regenerative medicine.


Assuntos
Intestinos , Células-Tronco Pluripotentes , Humanos , Organoides , Sistema Digestório , Reatores Biológicos
2.
Biochem Biophys Res Commun ; 542: 40-47, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33486190

RESUMO

Inflammatory bowel disease (IBD) comprises two major subtypes, ulcerative colitis (UC) and Crohn's disease, which are multifactorial diseases that may develop due to genetic susceptibility, dysbiosis, or environmental factors. Environmental triggers of IBD include food-borne factors, and a previous nationwide survey in Japan identified pre-illness consumption of isoflavones as a risk factor for UC. However, the precise mechanisms involved in the detrimental effects of isoflavones on the intestinal mucosa remain unclear. The present study employed human colonic organoids (hCOs) to investigate the functional effect of two representative isoflavones, genistein and daidzein, on human colonic epithelial cells. The addition of genistein to organoid reformation assays significantly decreased the number and size of reformed hCOs compared with control and daidzein treatment, indicating an inhibitory effect of genistein on colonic cell/progenitor cell function. Evaluation of the phosphorylation status of 49 different receptor tyrosine kinases showed that genistein selectively inhibited phosphorylation of epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (HGFR). We established a two-dimensional wound-repair model using hCOs and showed that genistein significantly delayed the overall wound-repair response. Our results collectively show that genistein may exert its detrimental effects on the intestinal mucosa via negative regulation of stem/progenitor cell function, possibly leading to sustained mucosal injury and the development of UC.

3.
Biochem Biophys Rep ; 25: 100906, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33490652

RESUMO

Notch signaling is activated in the intestinal epithelial cells (IECs) of patients with inflammatory bowel disease (IBD), and contributes to mucosal regeneration. Our previous study indicated that TNF-α and Notch signaling may synergistically promote the expression of the intestinal stem cell (ISC) marker OLFM4 in human IECs. In the present study, we investigated the gene regulation and function of OLFM4 in human IEC lines. We confirmed that TNF-α and Notch synergistically upregulate the mRNA expression of OLFM4. Luciferase reporter assay showed that OLFM4 transcription is regulated by the synergy of TNF-α and Notch. At the protein level, synergy between TNF-α and Notch promoted cytoplasmic accumulation of OLFM4, which has potential anti-apoptotic properties in human IECs. Analysis of patient-derived tissues and organoids consistently showed cytoplasmic accumulation of OLFM4 in response to NF-κB and Notch activation. Cytoplasmic accumulation of OLFM4 in human IECs is tightly regulated by Notch and TNF-α in synergy. Such cytoplasmic accumulation of OLFM4 may have a cell-protective role in the inflamed mucosa of patients with IBD.

4.
Biochem Biophys Res Commun ; 524(3): 533-541, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32014254

RESUMO

The early-phase wound repair response of the intestinal epithelium is characterized by rapid and organized cell migration. This response is regulated by several humoral factors, including TGF-ß. However, due to a lack of appropriate models, the precise response of untransformed intestinal epithelial cells (IECs) to those factors is unclear. In this study, we established an in vitro wound repair model of untransformed IECs, based on native type-I collagen. In our system, IECs formed a uniform monolayer in a two-chamber culture insert and displayed a stable wound repair response. Gene expression analysis revealed significant induction of Apoa1, Apoa4, and Wnt4 during the collagen-guided wound repair response. The wound repair response was enhanced significantly by the addition of TGF-ß. Surprisingly, addition of TGF-ß induced a set of genes, including Slc28a2, Tubb2a, and Cpe, that were expressed preferentially in fetal IECs. Moreover, TGF-ß significantly increased the peak velocity of migrating IECs and, conversely, reduced the time required to reach the peak velocity, as confirmed by the motion vector prediction (MVP) method. Our current in vitro system could be employed to assess other humoral factors involved in IEC migration and could contribute to a deeper understanding of the wound repair potentials of untransformed IECs.


Assuntos
Movimento Celular/genética , Células Epiteliais/patologia , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Intestinos/patologia , Modelos Biológicos , Fator de Crescimento Transformador beta/farmacologia , Cicatrização/genética , Animais , Movimento Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Organoides/efeitos dos fármacos , Organoides/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Cicatrização/efeitos dos fármacos
5.
Regen Ther ; 13: 1-6, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31970266

RESUMO

Inflammatory bowel disease (IBD) consists of two major idiopathic gastrointestinal diseases: ulcerative colitis and Crohn's disease. Although a significant advance has been achieved in the treatment of IBD, there remains a particular population of patients that are refractory to the conventional treatments, including the biologic agents. Studies have revealed the importance of "mucosal healing" in improving the prognosis of those difficult-to-treat patients, which indicates the proper and complete regeneration of the damaged intestinal tissue. In this regard, organoid-based regenerative medicine may have the potential to dramatically promote the achievement of mucosal healing in refractory IBD patients, and thereby improve their long-term prognosis as well. So far, studies have shown that hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) may have some beneficial effect on IBD patients through their transplantation or transfusion. Recent advance in stem cell biology has added intestinal stem cells (ISCs) as a new player in this field. It has been shown that ISCs can be grown in vitro as organoids and that those ex-vivo cultured organoids can be employed as donor cells for transplantation studies. Further studies using mice colitis models have shown that ex-vivo cultured organoids can engraft onto the colitic ulcers and reconstruct the crypt-villus structures. Such transplantation of organoids may not only facilitate the regeneration of the refractory ulcers that may persist in IBD patients but may also reduce the risk of developing colitis-associated cancers. Endoscopy-assisted transplantation of organoids may, therefore, become one of the alternative therapies for refractory IBD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...