Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Struct Funct ; 223(1): 221-232, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28756487

RESUMO

The superior temporal sulcus (STS) is an intriguing region both for its complex anatomy and for the multiple functions that it hosts. Unfortunately, most studies explored either the functional organization or the anatomy of the STS only. Here, we link these two aspects by investigating anatomo-functional correspondences between the voice-sensitive cortex (Temporal Voice Areas) and the STS depth. To do so, anatomical and functional scans of 116 subjects were processed such as to generate individual surface maps on which both depth and functional voice activity can be analyzed. Individual depth profiles of manually drawn STS and functional profiles from a voice localizer (voice > non-voice) maps were extracted and compared to assess anatomo-functional correspondences. Three major results were obtained: first, the STS exhibits a highly significant rightward depth asymmetry in its middle part. Second, there is an anatomo-functional correspondence between the location of the voice-sensitive peak and the deepest point inside this asymmetrical region bilaterally. Finally, we showed that this correspondence was independent of the gender and, using a machine learning approach, that it existed at the individual level. These findings offer new perspectives for the understanding of anatomo-functional correspondences in this complex cortical region.


Assuntos
Mapeamento Encefálico , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Voz/fisiologia , Adolescente , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Caracteres Sexuais , Estatísticas não Paramétricas , Adulto Jovem
2.
IEEE J Biomed Health Inform ; 20(3): 810-817, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26208373

RESUMO

Pooling data acquired on different MR scanners is a commonly used practice to increase the statistical power of studies based on MRI-derived measurements. Such studies are very appealing since they should make it possible to detect more subtle effects related to pathologies. However, the influence of confounds introduced by scanner-related variations remains unclear. When studying brain morphometry descriptors, it is crucial to investigate whether scanner-induced errors can exceed the effect of the disease itself. More specifically, in the context of developmental pathologies such as autism spectrum disorders (ASD), it is essential to evaluate the influence of the scanner on age-related effects. In this paper, we studied a dataset composed of 159 anatomical MR images pooled from three different scanners, including 75 ASD patients and 84 healthy controls. We quantitatively assessed the effects of the age, pathology, and scanner factors on cortical thickness measurements. Our results indicate that scan pooling from different sites would be less fruitful in some cortical regions than in others. Although the effect of age is consistent across scanners, the interaction between the age and scanner factors is important and significant in some specific cortical areas.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Criança , Humanos , Masculino , Adulto Jovem
3.
Neuroimage Clin ; 4: 593-603, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24936410

RESUMO

Autism spectrum disorder is associated with an altered early brain development. However, the specific cortical structure abnormalities underlying this disorder remain largely unknown. Nonetheless, atypical cortical folding provides lingering evidence of early disruptions in neurodevelopmental processes and identifying changes in the geometry of cortical sulci is of primary interest for characterizing these structural abnormalities in autism and their evolution over the first stages of brain development. Here, we applied state-of-the-art sulcus-based morphometry methods to a large highly-selective cohort of 73 young male children of age spanning from 18 to 108 months. Moreover, such large cohort was selected through extensive behavioral assessments and stringent inclusion criteria for the group of 59 children with autism. After manual labeling of 59 different sulci in each hemisphere, we computed multiple shape descriptors for each single sulcus element, hereby separating the folding measurement into distinct factors such as the length and depth of the sulcus. We demonstrated that the central, intraparietal and frontal medial sulci showed a significant and consistent pattern of abnormalities across our different geometrical indices. We also found that autistic and control children exhibited strikingly different relationships between age and structural changes in brain morphology. Lastly, the different measures of sulcus shapes were correlated with the CARS and ADOS scores that are specific to the autistic pathology and indices of symptom severity. Inherently, these structural abnormalities are confined to regions that are functionally relevant with respect to cognitive disorders in ASD. In contrast to those previously reported in adults, it is very unlikely that these abnormalities originate from general compensatory mechanisms unrelated to the primary pathology. Rather, they most probably reflect an early disruption on developmental trajectory that could be part of the primary pathology.


Assuntos
Envelhecimento/patologia , Transtorno do Espectro Autista/patologia , Córtex Cerebral/patologia , Criança , Pré-Escolar , Humanos , Lactente , Imageamento por Ressonância Magnética/métodos , Masculino , Tamanho do Órgão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Proc Natl Acad Sci U S A ; 106(26): 10415-22, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19556548

RESUMO

InfoMax and FastICA are the independent component analysis algorithms most used and apparently most effective for brain fMRI. We show that this is linked to their ability to handle effectively sparse components rather than independent components as such. The mathematical design of better analysis tools for brain fMRI should thus emphasize other mathematical characteristics than independence.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Simulação por Computador , Humanos , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Radiografia , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...