Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(6): 063302, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243507

RESUMO

The Superconducting Analyzer for MUlti-particles from RAdioIsotope (SAMURAI) Pion-Reconstruction and Ion-Tracker Time Projection Chamber (SπRIT TPC) was designed to enable measurements of heavy ion collisions with the SAMURAI spectrometer at the RIKEN radioactive isotope beam factory and provides constraints on the equation of state of neutron-rich nuclear matter. The SπRIT TPC has a 50.5 cm drift length and an 86.4 × 134.4 cm2 pad plane with 12 096 pads that are equipped with the generic electronics for TPCs. The SπRIT TPC allows for an excellent reconstruction of particles and provides isotopic resolution for pions and other light charged particles across a wide range of energy losses and momenta. The details of the SπRIT TPC are presented, along with discussion of the TPC performance based on cosmic rays and charged particles emitted in heavy ion collisions.

2.
Rev Sci Instrum ; 78(6): 065107, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17614638

RESUMO

The electron spin resonance (ESR) system which covers the magnetic field region up to 16 T, the quasicontinuous frequency region from 60 to 700 GHz, the temperature region from 1.8 to 4.2 K, and the hydrostatic pressure region up to 1.1 GPa has been developed. This is the first pulsed high-field and multifrequency ESR system with the pressure region over 1 GPa as far as we know. Transmission ESR spectra under hydrostatic pressure can be obtained by combining a piston-cylinder-type pressure cell and the pulsed magnetic field ESR apparatus. The pressure cell consists of a NiCrAl cylinder and sapphire or zirconia inner parts. The use of sapphire or zirconia as inner parts enables us to observe ESR under pressure because these inner parts have high transmittance for the electromagnetic wave with millimeter and submillimeter wavelengths. We have successfully applied this system for the pressure dependence measurements of an isolated spin system NiSnCl(6)6H(2)O up to 1.1 GPa. It was found that the single ion anisotropy parameter D of this compound strongly depends on pressure. The parameter D is approximately proportional to the pressure up to 0.75 GPa, and the relation between D and the pressure can be used for the pressure calibration of this high-field and high-pressure ESR system.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Manejo de Espécimes/instrumentação , Campos Eletromagnéticos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Pressão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin
3.
Phys Rev Lett ; 89(5): 052302, 2002 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-12144435

RESUMO

The analyzing power for proton-carbon elastic scattering in the Coulomb-nuclear interference region of momentum transfer, 9.0x10(-3)<-t<4.1x10(-2) (GeV/c)(2), was measured with a 21.7 GeV/c polarized proton beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory. The ratio of hadronic spin-flip to nonflip amplitude, r(5), was obtained from the analyzing power to be Rer(5)=0.088+/-0.058 and Imr(5)=-0.161+/-0.226.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...