Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686159

RESUMO

The tumor microenvironment (TME) plays a pivotal role in the fate of cancer cells, and tumor-infiltrating immune cells have emerged as key players in shaping this complex milieu. Cancer is one of the leading causes of death in the world. The most common standard treatments for cancer are surgery, radiation therapy, and chemotherapeutic drugs. In the last decade, immunotherapy has had a potential effect on the treatment of cancer patients with poor prognoses. One of the immune therapeutic targeted approaches that shows anticancer efficacy is a type 2 diabetes medication, metformin. Beyond its glycemic control properties, studies have revealed intriguing immunomodulatory properties of metformin. Meanwhile, several studies focus on the impact of metformin on tumor-infiltrating immune cells in various tumor models. In several tumor models, metformin can modulate tumor-infiltrated effector immune cells, CD8+, CD4+ T cells, and natural killer (NK) cells, as well as suppressor immune cells, T regulatory cells, tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs). In this review, we discuss the role of metformin in modulating tumor-infiltrating immune cells in different preclinical models and clinical trials. Both preclinical and clinical studies suggest that metformin holds promise as adjunctive therapy in cancer treatment by modulating the immune response within the tumor microenvironment. Nonetheless, both the tumor type and the combined therapy have an impact on the specific targets of metformin in the TME. Further investigations are warranted to elucidate the precise mechanisms underlying the immunomodulatory effects of metformin and to optimize its clinical application in cancer patients.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Imunoterapia , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos
3.
Neurochem Int ; 104: 49-63, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28069421

RESUMO

Alterations in the intracellular ion environment have been identified as one of the signals playing a critical role in the control of cellular proliferation and differentiation; however, the mechanisms responsible for signal transduction remain unclear. Recent studies have reported that channelrhodopsin-2 (ChR2) is a rapidly gated blue light (BL)-sensitive cation channel suitable for the non-invasive control of ion influx. We herein examined the expression of differentiation-associated markers by photo-activation and its signal transduction in ChR2-expressing OS3 (OS3ChR2) cells, which are clonal bipotential glial progenitor cells. Increases were observed in intracellular Na+ and Ca2+ concentrations in OS3ChR2 cells with BL exposure. Alterations in the intracellular ion environment, particularly in Ca2+, led to increases in the expression of oligodendrocyte markers including galactocerebrosides (GalC) and decreases in that of astrocyte markers such as glial fibrillary acidic protein (GFAP). These alterations also triggered activation of the ERK1/2 signaling pathway, which is involved in cell survival, and PI3K/Akt/mTOR signaling pathway, which is involved in oligodendrocyte differentiation, characterized by GalC expression. Moreover, when photo-activated OS3ChR2 cells were injected into mice with lysophosphatidyl choline (LPC)-induced demyelination, deficits in motor function were reduced. Our results demonstrated that signal transduction by ChR2-expressing glial progenitor cells may be controlled through alterations induced in the intracellular ion environment by photo-activation and results in oligodendrocyte differentiation from glial progenitor cells. Our results also suggest that ChR2-expressing glial progenitor cells have potential as a useful tool for therapeutic approaches to brain and spinal cord disorders associated with oligodendrocyte dysfunctions.


Assuntos
Diferenciação Celular/fisiologia , Channelrhodopsins/metabolismo , Neuroglia/metabolismo , Células-Tronco/citologia , Animais , Astrócitos/metabolismo , Linhagem Celular , Camundongos , Oligodendroglia/citologia , Optogenética/métodos , Fosfatidilinositol 3-Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...