Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(33): 29910-29925, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636957

RESUMO

Multiwalled carbon nanotubes (MWCNTs) were employed as added particles for nanofluids in this practical investigation. To identify the most appropriate nanofluid for cooling PVT systems that are functional in the extreme summer environment of Baghdad, the parameters of base fluid, surfactant, and sonication time used for mixing were examined. Water was chosen as the base fluid instead of other potential candidates such as ethylene glycol (EG), propylene glycol (PG), and heat transfer oil (HTO). Thermal conductivity and stability were important thermophysical qualities that were impacted by the chosen parameters. The nanofluid tested in Baghdad city (consisting of 0.5% MWCNTs, water, and CTAB with a sonication period of three and a quarter hours) resulted in a 119.5, 308, and 210% enhancement of thermal conductivity (TC) for water compared with EG, PG, and oil, respectively. In addition, the nanofluid-cooled PVT system had an electrical efficiency that was 88.85% higher than standalone PV technology and 44% higher than water-cooled PVT systems. Moreover, the thermal efficiency of the nanofluid-cooled PVT system was 20% higher than the water-cooled PVT system. Finally, the nanofluid-cooled PVT system displayed the least decrease in electrical efficiency and a greater thermal efficiency even when the PV panel was at its hottest at noon.

2.
J Basic Microbiol ; 63(2): 223-234, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36538731

RESUMO

In this study, selected properties of protease and the complete genome sequence of Bacillus licheniformis NWMCC0046 were investigated, to discover laundry applications and other potential probiotic properties of this strain. Partial characterization of B. licheniformis NWMCC0046 showed that its protease has good activity both in alkaline environments and at low temperatures. Also, the protease is compatible with commercial detergents and can be used as a detergent additive for effective stain removal at low temperatures. The complete genome sequence of B. licheniformis NWMCC0046 is comprised of a 4,321,565 bp linear chromosome with a G + C content of 46.78% and no plasmids. It had 4504 protein-encoding genes, 81 transfer RNA (tRNA) genes, and 24 ribosomal RNA (rRNA) genes. Genomic analysis revealed genes involved in exocellular enzyme production and probiotic properties. In addition, genomic sequence analysis revealed specific genes encoding carbohydrate metabolism pathways, resistance, and cold adaptation capacity. Overall, protease properties show its potential as a detergent additive enzyme. The complete genome sequence information of B. licheniformis NWMCC0046 was obtained, and functional prediction revealed its numerous probiotic properties.


Assuntos
Bacillus licheniformis , Detergentes , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Proteínas de Bactérias/metabolismo , Endopeptidases/genética , Plasmídeos , Lavanderia
3.
Molecules ; 27(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956814

RESUMO

Using traditional weight-loss tests, as well as different electrochemical techniques (potentiodynamic polarization and electrochemical impedance spectroscopy), we investigated the corrosion-inhibition performance of 2,2'-(1,4-phenylenebis(methanylylidene)) bis(N-(3-methoxyphenyl) hydrazinecarbothioamide) (PMBMH) as an inhibitor for mild steel in a 1 M hydrochloric acid solution. The maximum protection efficacy of 0.0005 M of PMBMH was 95%. Due to the creation of a protective adsorption layer instead of the adsorbed H2O molecules and acidic chloride ions, the existence of the investigated inhibitor reduced the corrosion rate and increased the inhibitory efficacy. The inhibition efficiency increased as the inhibitor concentration increased, but it decreased as the temperature increased. The PMBMH adsorption mode followed the Langmuir adsorption isotherm, with high adsorption-inhibition activity. Furthermore, the value of the ∆Gadso indicated that PMBMH contributed to the physical and chemical adsorption onto the mild-steel surface. Moreover, density functional theory (DFT) helped in the calculation of the quantum chemical parameters for finding the correlation between the inhibition activity and the molecular structure. The experimental and theoretical findings in this investigation are in good agreement.


Assuntos
Ácido Clorídrico , Aço , Ácidos , Corrosão , Ácido Clorídrico/química , Bases de Schiff , Aço/química , Termodinâmica
4.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808099

RESUMO

Iraq is characterized by hot and sunny weather with high radiation intensity. These conditions are suitable to produce photovoltaic electricity, on the one hand, but on the other hand are not suitable for photovoltaic modules whose efficiency decreases with increasing temperature. In this study, a photovoltaic module was practically cooled by two PV/T systems, one cooled by water and the other by nanofluid and nano-paraffin. Iraqi-produced paraffin was used in this study for its cheap price, and because its melting and freezing temperature (46 °C) is close to the operating range of photovoltaic modules. Nano-TiO2 was adopted as an additive to water and paraffin. The study results showed an obvious enhancement of the thermal conductivity of both water and paraffin, by up to 126.6% and 170%, respectively, after adding a 2% mass fraction of nano-TiO2. The practical experiments were carried out outdoors in the city of Baghdad, Iraq. A fluid mass flow rate of 0.15 kg/s was selected for practical reasons, since at this rate the system operates without vibration. The PV panel's temperature, in the PV/T system (nano-fluid and nano-paraffin), decreased by an average of 19 °C when the tested systems operated during the peak period (12 PM to 3 PM). The decrease in temperatures of the PV module caused a clear improvement in its electrical efficiency, as it was 106.5% and 57.7% higher than the PV module (standalone) and water-cooled PV system, respectively. The thermal efficiency of this system was 43.7% higher than the case of the water-cooled PV/T system. The proposed system (nano-fluid and nano-paraffin) provides a greater possibility of controlling the heat capacity and increasing both efficiencies (electrical and thermal), when compared to a standalone PV module, in harsh Iraqi weather.

5.
Sci Rep ; 12(1): 4705, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304485

RESUMO

The corrosion performance of mild steel (MS) in 1M HCl solution was examined by weight loss (WL), potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), electrochemical frequency modulation (EFM), and open circuit potential (OCP) measurements in the absence and presence of nonanedihydrazide. PDP measurements indicated that nonanedihydrazide acts as a mixed inhibitor due to its adsorption on the MS surface, exhibiting an inhibition efficiency of more than 97%. The surface morphology investigation of the protective layer on the MS surface confirmed that adsorption of nonanedihydrazide molecules occurred via chemical adsorption following Langmuir's isotherm model. The effect of temperature on the corrosion performance in the presence of nonanedihydrazide was investigated in the range of 303-333 K, showing that the inhibition efficiency increased with an increase in the inhibitor concentration and decreased with an increase in temperature. A new green corrosion inhibitor was synthesised and theoretical computations were conducted to completely understand the inhibition mechanism. Nonanedihydrazide molecules were investigated by DFT (density functional theory) using the B3LYP functional to evaluate the relationship of corrosion inhibition performance and the molecular structure. The computed theoretical parameters presented significant support for understanding the inhibitive mechanism revealed by the inhibitory molecules and are in good agreement with WL, PDP, EIS, (EFM), and OCP results.

6.
Data Brief ; 40: 107838, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35106341

RESUMO

This data article includes data described in the investigation report entitled "The synergistic role of azomethine group and triazole ring at improving the anti-corrosive performance of 2-amino-4-phenylthiazole" (Alamiery et al., 2021). In this data article, a comprehensive effect of 2-Amino-4-phenyl-N-benzylidene-5-(1,2,4-triazol-1-yl)thiazole (APNT) and 2-amino-4-phenylthiazole (APT) and optimized process parameter of the inhibitor in 1 M HCl solution was presented using gravimetric techniques and Density functional theory. The presence of the inhibitors influenced the corrosion resistance of mild steel (MS). Inhibition efficiencies values of 98.1% and 94.74% were recorded as results of inhibition of the MS by the inhibiting compounds APNT and ATP respectively. DFT studies observed that the presence of benzylidene to the APNT and the substitution of a triazole in the thiazole ring are adsorption sites that increase the interaction of the APNT molecules with the iron atoms on the MS surface.

7.
Nanomaterials (Basel) ; 10(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076278

RESUMO

Many people suffer from myopia or hyperopia due to the refractive errors of the cornea all over the world. The use of high refractive index (RI), Abbe number (νd), and visible light transmittance (T%) polymeric contact lenses (CLs) holds great promise in vision error treatment as an alternative solution to the irreversible laser-assisted in situ keratomileusis (LASIK) surgery. Titanium dioxide nanoparticles (TiO2 NPs) have been suggested as a good candidate to rise the RI and maintain high transparency of a poly(methyl methacrylate) (PMMA)-TiO2 nanocomposite. This work includes a preparation of TiO2 NPs using the sol gel method as well as a synthesis of pure PMMA by free radical polarization and PMMA-TiO2 CLs using a cast molding method of 0.005 and 0.01 w/v concentrations and a study of their effect on the aberrated human eye. ZEMAX optical design software was used for eye modeling based on the Liou and Brennan eye model and then the pure and doped CLs were applied. Ocular performance was evaluated by modulation transfer function (MTF), spot diagram, and image simulation. The used criteria show that the best vision correction was obtained by the CL of higher doping content (p < 0.0001) and that the generated spherical and chromatic aberrations in the eye had been reduced.

8.
Materials (Basel) ; 12(5)2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30857349

RESUMO

It is well known that three-dimensional (3D) printing is an emerging technology used to produce customized implants and surface characteristics of implants, strongly deciding their osseointegration ability. In this study, Ti alloy microspheres were printed under selected rational printing parameters in order to tailor the surface micro-characteristics of the printed implants during additive manufacturing by an in situ, controlled way. The laser path and hatching space were responsible for the appearance of the stripy structure (S), while the bulbous structure (B) and bulbous⁻stripy composite surface (BS) were determined by contour scanning. A nano-sized structure could be superposed by hydrothermal treatment. The cytocompatibility was evaluated by culturing Mouse calvaria-derived preosteoblastic cells (MC3T3-E1). The results showed that three typical microstructured surfaces, S, B, and BS, could be achieved by varying the 3D printing parameters. Moreover, the osteogenic differentiation potential of the S, B, and BS surfaces could be significantly enhanced, and the addition of nano-sized structures could be further improved. The BS surface with nano-sized structure demonstrated the optimum osteogenic differentiation potential. The present research demonstrated an in situ, controlled way to tailor and optimize the surface structures in micro-size during the 3D printing process for an implant with higher osseointegration ability.

9.
Environ Sci Pollut Res Int ; 24(3): 2804-2819, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27837474

RESUMO

In this study, the photocatalytic degradation of toxic pollutant (2-chlorophenol) in the presence of ZnO nanoparticles (ZnO NPs) was investigated under solar radiation. The three main factors, namely pH of solution, solar intensity and calcination temperature, were selected in order to examine their effects on the efficiency of the degradation process. The response surface methodology (RSM) technique based on D-optimal design was applied to optimise the process. ANOVA analysis showed that solar intensity and calcination temperature were the two significant factors for degradation efficiency. The optimum conditions in the model were solar intensity at 19.8 W/m2, calcination temperature at 404 °C and pH of 6.0. The maximum degradation efficiency was predicted to be 90.5% which was in good agreement with the actual experimental value of 93.5%. The fit of the D-optimal design correlated very well with the experimental results with higher values of R 2 and R 2adj correlation coefficients of 0.9847 and 0.9676, respectively. The intermediate mechanism behaviour of the 2-chlorophenol degradation process was determined by gas chromatography-mass spectrometry (GC-MS). The results confirmed that 2-chlorophenol was converted to acetic acid, a non-toxic compound.


Assuntos
Clorofenóis , Nanopartículas , Catálise , Cromatografia Gasosa-Espectrometria de Massas , Luz Solar , Temperatura , Óxido de Zinco
10.
ScientificWorldJournal ; 2014: 543231, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24605055

RESUMO

Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape.


Assuntos
Modelos Teóricos , Algoritmos
11.
ScientificWorldJournal ; 2013: 492762, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24078795

RESUMO

Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration.


Assuntos
Temperatura Alta , Modelos Teóricos , Termodinâmica , Fricção
12.
Chemosphere ; 91(11): 1604-11, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23384541

RESUMO

The optical properties of a ZnO photocatalyst were enhanced with various dopant concentrations of Fe(3+). Doped ZnO nanoparticles were synthesized via a sol-gel method without the use of capping agents or surfactants and was then characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet-visible (UV-Vis) spectroscopy. The results showed that ZnO has a wurtzite, hexagonal structure and that the Fe(3+) ions were well incorporated into the ZnO crystal lattice. As the Fe(3+) concentration increased from 0.25 wt.% to 1 wt.%, the crystal size decreased in comparison with the undoped ZnO. The spectral absorption shifts of the visible light region (red shift) and the band gap decreases for each Fe-ZnO sample were investigated. The photocatalytic activities of the ZnO and Fe-ZnO samples were evaluated based on the degradation of 2-chlorophenol in aqueous solution under solar radiation. The samples with a small concentration of Fe(3+) ions showed enhanced photocatalytic activity with an optimal maximum performance at 0.5 wt.%. The results indicated that toxicity removal of 2-chlorophenol at same line of degradation efficiency. Small crystallite size and low band gap were attributed to high activities of Fe-ZnO samples under various concentrations of Fe(3+) ions compared to undoped ZnO.


Assuntos
Clorofenóis/efeitos da radiação , Poluentes Ambientais/efeitos da radiação , Compostos Férricos/efeitos da radiação , Nanopartículas/efeitos da radiação , Óxido de Zinco/síntese química , Óxido de Zinco/efeitos da radiação , Catálise , Luz , Transição de Fase , Fotólise
13.
Molecules ; 16(8): 6969-84, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21844844

RESUMO

3-Aminocoumarin (L) has been synthesized and used as a ligand for the formation of Cr(III), Ni(II), and Cu(II) complexes. The chemical structures were characterized using different spectroscopic methods. The elemental analyses revealed that the complexes where M=Ni(II) and Cu(II) have the general formulae [ML(2)Cl(2)], while the Cr(III) complex has the formula [CrL(2)Cl(2)]Cl. The molar conductance data reveal that all the metal chelates, except the Cr(III) one, are non-electrolytes. From the magnetic and UV-Visible spectra, it is found that these complexes have octahedral structures. The stability for the prepared complexes was studied theoretically using Density Function Theory. The total energy for the complexes was calculated and it was shown that the copper complex is the most stable one. Complexes were tested against selected types of microbial organisms and showed significant activities. The free radical scavenging activity of metal complexes have been determined by measuring their interaction with the stable free radical DPPH and all the compounds have shown encouraging antioxidant activities.


Assuntos
Aminocumarinas/síntese química , Antibacterianos/síntese química , Antifúngicos/síntese química , Antioxidantes/síntese química , Bactérias/efeitos dos fármacos , Quelantes/síntese química , Complexos de Coordenação/síntese química , Fungos/efeitos dos fármacos , Aminocumarinas/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/metabolismo , Configuração de Carboidratos , Quelantes/farmacologia , Cromo/metabolismo , Complexos de Coordenação/farmacologia , Cobre/metabolismo , Relação Dose-Resposta a Droga , Fungos/crescimento & desenvolvimento , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Micoses/microbiologia , Níquel/metabolismo , Picratos/antagonistas & inibidores , Picratos/metabolismo , Espectrofotometria , Termodinâmica
14.
J Hazard Mater ; 181(1-3): 1080-7, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20576354

RESUMO

The main goal of this paper was to introduce an environmental fate and risk assessment methodology for comparing and establishing the general features of new and existing non-volatile organic chemicals (NVOCs) used in agricultural activities, based on simple and readily available properties. This methodology is a computer program called the multimedia agricultural fate and risk assessment model (MAFRAM). This model is a combination of the EQC-2V model, which describes the fate of NVOCs, with the ecological relative risk (EcoRR) approach, which assesses the ecotoxicological risk to agro-ecosystems. MAFRAM divides the agricultural environment into two main zones, which are the on- and off-farm zones. Each zone is subdivided into six compartments, including the air, water, soil, sediment, aboveground plants, and roots. The required input data are the chemical-physical properties of the pesticide, biota data, and environmental properties. The MAFRAM output includes the inter-compartmental transport and transfer rates, the primary loss mechanisms, chemical concentration, amount, residence time, and the rank of risk in each compartment. In addition, it can provide several secondary results. The MAFRAM application was illustrated using typical homogenous region properties and was run with an illustrative emission rate of 1 kg/h into air, using spinosad as a case study.


Assuntos
Agricultura , Poluentes Ambientais/análise , Compostos Orgânicos/análise , Combinação de Medicamentos , Ecossistema , Ecotoxicologia , Macrolídeos , Métodos , Compostos Orgânicos/toxicidade , Medição de Risco/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...