Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38318113

RESUMO

While human exposure to metals may play a role in the pathogenesis of anemia, consumption of balanced diets may boost blood hemoglobin (Hb) levels in humans. Although informal electronic waste (e-waste) recycling processes have recently drawn attention as an important source of pollution, there is almost no empirical evidence on the relationship between diet, metals exposure and anemia among e-waste recyclers. Therefore, we evaluated possible ameliorating effects of diet on metal exposure related anemia, as measured by Hb levels of e-waste recyclers and a reference population in Ghana. This repeated measure study used data collected from e-waste recyclers (n=142) and a reference population (n=65) between March 2017 and October 2018. Stored whole blood samples were analyzed for the following metals; Cd, Pb, Rb, Tb, Tl, and Eu. Next, Hb levels were analysed using the URIT-810® semiautomatic biochemistry analyzer. Furthermore, a 48-hour dietary recall questionnaire was administered to assess dietary intake parameters such as protein, folate, carbohydrates, Fe, Ca, Mg, Se, Zn, and Cu. Ordinary regression models were used to estimate joint effects of metals and nutrients on Hb levels. At baseline, the mean Hb was lower among recyclers (12.99 ± 3.17 g/dL) than the reference group (13.02 ±2.37 g/dL). Blood Pb, Cd, Rb, Eu and Tb were associated with significant decreases in Hb levels of e-waste recyclers. Dietary intake of proteins and Fe was associated with concomitant increase in Hb levels of both groups as well as when analysis was restricted to recyclers. Despite the high exposure of e-waste recyclers to a myriad of metals, consumption of Fe-rich diets appears to ameliorate anemia and improved Hb levels (ß=0.229; 95% CI: 0.013, 0.445; p=0.04). Therefore, the consumption of Fe and protein-rich foods may boost blood Hb levels in e-waste recyclers, even though exposure to high levels of metals is a predictor of anemia among this worker-group.

2.
BMC Public Health ; 21(1): 2161, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823492

RESUMO

BACKGROUND: Informal electronic waste recycling activities are major contributors to ambient air pollution, yet studies assessing the effects or relationship between direct/continuous exposure of informal e-waste workers to particulate matter and cardiovascular function are rare. METHODS: Repeated measurements of fractions of PM2.5, PM10-2.5, and PM10 in personal air of informal e-waste workers, (n = 142) and a comparable group (n = 65) were taken over a period of 20 months (March 2017 to November, 2018). Concurrently, 5-min resting electrocardiogram was performed on each participant to assess resting heart rate variability indices. Linear mixed-effects models were used to assess the association between PM fractions and cardiac function. RESULTS: SDNN, RMSSD, LF, HF and LH/HF ratio were all associated with PM. Significant associations were observed for PM2.5 and Mean NN (p = 0.039), PM10 and SDNN (p = 0.035) and PM 10-2.5 and LH/HF (p = 0.039). A 10 µg/m3 increase in the concentrations of PM 2.5, PM10-2.5, and PM10 in personal air was associated with reduced HRV indices and increased resting HR. A 10 µg/m3 per interquartile (IQR) increase in PM10-2.5 and PM10, decreased SDNN by 11% [(95% CI: - 0.002- 0.000); (p = 0.187)] and 34% [(95% CI: - 0.002-0.001); (p = 0.035)] respectively. However, PM2.5 increased SDNN by 34% (95% CI: - 1.32-0.64); (p = 0.493). Also, 10 µg/m3 increase in PM2.5, PM10-2.5 and PM10 decreased RMSSD by 27% [(- 1.34-0.79); (p = 0.620)], 11% [(- 1.73, 0.95); (p = 0.846)] and 0.57% [(- 1.56-0.46); (p = 0.255%)]. CONCLUSION: Informal e-waste workers are at increased risk of developing cardiovascular disease from cardiac autonomic dysfunction as seen in reduced HRV and increased heart rate.


Assuntos
Poluentes Atmosféricos , Resíduo Eletrônico , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Exposição Ambiental , Frequência Cardíaca , Humanos , Estudos Longitudinais , Material Particulado/análise , Material Particulado/toxicidade
3.
Chemosphere ; 280: 130677, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33964762

RESUMO

There is growing evidence that e-waste recyclers may be exposed to potentially high levels of metals though associations between such exposures and specific work activities is not well established. In addition, studies have focused on metals traditionally biomonitored and there is no data on the exposure of recyclers to elements increasingly being used in new technologies. In the current study, levels of metals were measured in blood and urine of e-waste recyclers at Agbogbloshie (Ghana) and a control group. Blood and urine samples (from 100 e-waste recyclers and 51 controls) were analyzed for 17 elements (Ag, As, Ba, Cd, Ce, Cr, Eu, La, Mn, Nd, Ni, Pb, Rb, Sr, Tb, Tl, Y) using the ICP-MS. Most e-waste recyclers reported performing at least 4 different tasks in decreasing order as e-waste dismantling (54%), trading/selling of e-waste (45%), burning wires only (40%), and collecting wires after burning (34%). Mean levels of blood Pb, Sr, Tl, and urinary Pb, Eu, La, Tb, and Tl were significantly higher in recyclers versus controls. In general, the collectors and sorters tended to have higher elemental levels than other work groups. Blood Pb levels (mean 92.4 µg/L) exceeded the U.S. CDC reference level in 84% of the e-waste recyclers. Likewise, blood Cd, Mn, and urinary As levels in recyclers and controls were higher than in reference populations elsewhere. E-waste recyclers are exposed to metals traditionally studied (e.g., Pb, Cd, As) and several other technology-critical and rare earth elements which previously have not been characterized through human biomonitoring.


Assuntos
Resíduo Eletrônico , Monitoramento Biológico , Resíduo Eletrônico/análise , Monitoramento Ambiental , Gana , Humanos , Metais/análise , Reciclagem
4.
Artigo em Inglês | MEDLINE | ID: mdl-33805282

RESUMO

The recycling of electronic waste (e-waste) contaminates ecosystems with metals, though a compilation of data from across sites worldwide is lacking, without which evidence-based comparisons and conclusions cannot be realized. As such, here, a systematic review of the literature was conducted to identify peer-reviewed studies concerning e-waste sites (published between 2005 and 2017) that reported on the concentration of heavy metals (Cd, Hg, As, Pb and Cr) in soil, water and sediment. From 3063 papers identified, 59 studies from 11 countries meeting predefined criteria were included. Reported metal concentrations were summarized, and a narrative synthesis was performed. This review summarized 8286 measurements of the aforementioned metals in soils (5836), water (1347) and sediment (1103). More than 70% of the studies were conducted in Asia. In nearly all cases, the average metal concentrations in a particular medium from a given site were above guideline values; suggesting soils, water and sediment at, or near, e-waste recycling sites are contaminated. Across all media, concentrations of Pb were generally highest, followed by Cr, As, Cd and Hg. The synthesized information demonstrates that e-waste sites worldwide are contaminated with metals, that geographic data gaps exist, that the quality of most studies can be improved and that action is needed to help reduce such levels to protect human health and the environment.


Assuntos
Resíduo Eletrônico , Metais Pesados , Poluentes do Solo , Ásia , China , Ecossistema , Resíduo Eletrônico/análise , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Reciclagem , Solo , Poluentes do Solo/análise
5.
Artigo em Inglês | MEDLINE | ID: mdl-33669889

RESUMO

Informal recycling of electrical and electronic waste (e-waste) has myriad environmental and occupational health consequences, though information about the chronic musculoskeletal health effects on workers is limited. The aim of this study was to examine the prevalence and intensity of self-reported musculoskeletal disorder (MSD) symptoms among e-waste workers at Agbogbloshie in Ghana-the largest informal e-waste dumpsite in West Africa-relative to workers not engaged in e-waste recycling. A standardized musculoskeletal discomfort questionnaire was administered to 176 e-waste workers (73 collectors, 82 dismantlers, and 21 burners) and 41 workers in a reference group. The number of body parts with musculoskeletal discomfort were 1.62 and 1.39 times higher for collectors and dismantlers than burners, respectively. A 1-week discomfort prevalence was highest for collectors (91.8%) followed by dismantlers (89%), burners (81%), and the reference group (70.7%). The discomfort prevalence for e-waste workers was highest in the lower back (65.9%), shoulders (37.5%), and knees (37.5%). Whole-body pain scores (mean ± SE) were higher for collectors (83.7 ± 10.6) than dismantlers (45.5 ± 7.6), burners (34.0 ± 9.1), and the reference group (26.4 ± 5.9). Differences in prevalence, location, and intensity of MSD symptoms by the e-waste job category suggest specific work-related morbidity. Symptom prevalence and intensity call attention to the high risk for MSDs and work disability among informal e-waste workers, particularly collectors and dismantlers.


Assuntos
Resíduo Eletrônico , Doenças Musculoesqueléticas , Exposição Ocupacional , Gana/epidemiologia , Humanos , Doenças Musculoesqueléticas/epidemiologia , Exposição Ocupacional/análise , Reciclagem
6.
Artigo em Inglês | MEDLINE | ID: mdl-33371401

RESUMO

Growing evidence suggests that micronutrient status is adversely impacted by toxic metals (e.g., cadmium, lead, and arsenic) exposures; however, the micronutrient status of e-waste recyclers who are amongst the highest metal-exposed groups is not known. This study, therefore, assessed the micronutrient status of e-waste recyclers using dietary information (2-day 24-h recall survey) and biomarker data (whole blood and urine) among 151 participants (100 e-waste recyclers at Agbogbloshie and 51 controls at Madina Zongo from the Accra region, Ghana) in March 2017. Biomarker levels of iron (Fe), calcium (Ca), magnesium (Mg), selenium (Se), zinc (Zn) and copper (Cu) were analyzed by the ICP-MS. Linear regression models were used to assess associations ofwork-related factors and sociodemographic characteristics with micronutrient intake, blood, and urine micronutrient levels. The results showed that apart from Fe and Zn, e-waste recyclers at Agbogbloshie did not meet the day-to-day dietary requirements for Ca, Cu, Se, and Mg intake. Except for the low levels of Mg and Fe detected in blood of e-waste recyclers, all other micronutrients measured in both blood and urine of both groups fell within their reference range. Exposure to biomass burning was associated with lower blood levels of Fe, Mg, and Zn among the e-waste recyclers. Further, among e-waste recyclers, significant relationships were found between the number of years spent recycling e-waste and urinary Ca and Cu excretion. Given that, some dietary and blood levels of micronutrients were below their reference ranges, the implementation of evidence-based nutrition strategies remains necessary among e-waste recyclers to reduce their risk of becoming malnourished.


Assuntos
Resíduo Eletrônico , Micronutrientes , Exposição Ocupacional , Reciclagem , Gana , Humanos , Oligoelementos
7.
BMC Public Health ; 20(1): 1067, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631289

RESUMO

BACKGROUND: Informal recycling of electronic waste (e-waste) releases particulate matter (PM) into the ambient air. Human exposure to PM has been reported to induce adverse effects on cardiovascular health. However, the impact of PM on the cardiovascular health of e-waste recyclers in Ghana has not been studied. Although intake of micronutrient-rich diet is known to modify these PM-induced adverse health effects, no data are available on the relationship between micronutrient status of e-waste recyclers and the reported high-level exposure to PM. We therefore investigated whether the intake of micronutrient-rich diets ameliorates the adverse effects of ambient exposure to PM2.5 on blood pressure (BP). METHODS: This study was conducted among e-waste and non-e-waste recyclers from March 2017 to October 2018. Dietary micronutrient (Fe, Ca, Mg, Se, Zn, and Cu) intake was assessed using a 2-day 24-h recall. Breathing zone PM2.5 was measured with a real-time monitor. Cardiovascular indices such as systolic BP (SBP), diastolic BP (DBP), and pulse pressure (PP) were measured using a sphygmomanometer. Ordinary least-squares regression models were used to estimate the joint effects of ambient exposure to PM2.5 and dietary micronutrient intake on cardiovascular health outcomes. RESULTS: Fe was consumed in adequate quantities, while Ca, Se, Zn, Mg, and Cu were inadequately consumed among e-waste and non-e-waste recyclers. Dietary Ca, and Fe intake was associated with reduced SBP and PP of e-waste recyclers. Although PM2.5 levels were higher in e-waste recyclers, exposures in the control group also exceeded the WHO 24-h guideline value (25 µg/m3). Exposure to 1 µg/m3 of PM2.5 was associated with an increased heart rate (HR) among e-waste recyclers. Dietary Fe intake was associated with a reduction in systolic blood pressure levels of e-waste recyclers after PM exposure. CONCLUSIONS: Consistent adequate dietary Fe intake was associated with reduced effects of PM2.5 on SBP of e-waste recyclers overtime. Nonetheless, given that all other micronutrients are necessary in ameliorating the adverse effects of PM on cardiovascular health, nutrition-related policy dialogues are required. Such initiatives would help educate informal e-waste recyclers and the general population on specific nutrients of concern and their impact on the exposure to ambient air pollutants.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Sistema Cardiovascular/efeitos dos fármacos , Dieta/métodos , Resíduo Eletrônico/efeitos adversos , Micronutrientes/administração & dosagem , Adulto , Poluentes Atmosféricos/toxicidade , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Inquéritos sobre Dietas , Exposição Ambiental/efeitos adversos , Feminino , Gana , Humanos , Masculino , Estado Nutricional , Doenças Profissionais/etiologia , Doenças Profissionais/prevenção & controle , Exposição Ocupacional/efeitos adversos , Material Particulado/toxicidade , Gerenciamento de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...