Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6701): 1203-1212, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38870306

RESUMO

Radiative cooling textiles hold promise for achieving personal thermal comfort under increasing global temperature. However, urban areas have heat island effects that largely diminish the effectiveness of cooling textiles as wearable fabrics because they absorb emitted radiation from the ground and nearby buildings. We developed a mid-infrared spectrally selective hierarchical fabric (SSHF) with emissivity greatly dominant in the atmospheric transmission window through molecular design, minimizing the net heat gain from the surroundings. The SSHF features a high solar spectrum reflectivity of 0.97 owing to strong Mie scattering from the nano-micro hybrid fibrous structure. The SSHF is 2.3°C cooler than a solar-reflecting broadband emitter when placed vertically in simulated outdoor urban scenarios during the day and also has excellent wearable properties.

2.
ACS Nano ; 18(23): 14791-14840, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38814908

RESUMO

We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.

3.
ACS Nano ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318795

RESUMO

Self-assembly of colloidal nanocrystals (NCs) into superlattices (SLs) is an appealing strategy to design hierarchically organized materials with promising functionalities. Mechanistic studies are still needed to uncover the design principles for SL self-assembly, but such studies have been difficult to perform due to the fast time and short length scales of NC systems. To address this challenge, we developed an apparatus to directly measure the evolving phases in situ and in real time of an electrostatically stabilized Au NC solution before, during, and after it is quenched to form SLs using small-angle X-ray scattering. By developing a quantitative model, we fit the time-dependent scattering patterns to obtain the phase diagram of the system and the kinetics of the colloidal and SL phases as a function of varying quench conditions. The extracted phase diagram is consistent with particles whose interactions are short in range relative to their diameter. We find the degree of SL order is primarily determined by fast (subsecond) initial nucleation and growth kinetics, while coarsening at later times depends nonmonotonically on the driving force for self-assembly. We validate these results by direct comparison with simulations and use them to suggest dynamic design principles to optimize the crystallinity within a finite time window. The combination of this measurement methodology, quantitative analysis, and simulation should be generalizable to elucidate and better control the microscopic self-assembly pathways of a wide range of bottom-up assembled systems and architectures.

4.
ACS Nano ; 18(1): 858-873, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38108289

RESUMO

Colloidal semiconductor nanocrystals are an important class of materials which have many desirable optoelectronic properties. In their bulk phases, gallium- and aluminum-containing III-V materials such as GaAs, GaP, and Al1-xGaxAs represent some of the most technologically important semiconductors. However, their colloidal synthesis by traditional methods is difficult due to the high temperatures needed to crystallize these highly covalent materials and the extreme reactivity of Ga- and Al- precursors toward organic solvents at such high temperatures. A recently developed paradigm shift in the synthesis of these materials is to use molten inorganic salts as solvents to prepare Ga- containing III-V colloidal nanocrystals by cation exchange of the corresponding indium pnictide (InPn) colloidal nanocrystals. There have been several successful applications of molten salt solvents to prepare III-phosphide colloidal nanocrystals. However, little is known about the nature of these reaction environments at the relevant reaction conditions and synthesis of III-arsenide colloidal nanocrystals remains challenging. Herein we report a detailed study on cation exchange of InPn nanocrystals using nominally Lewis basic molten salt solvents with added gallium halides. Surprisingly, these salt systems phase separate into two immiscible phases, and the nanocrystals preferentially segregate to one of the phases. Using a suite of in situ spectroscopy tools, we identify the phase the nanocrystals segregate to as Lewis neutral alkali tetrahalogallate molten salts. We apply in situ high-temperature Raman spectroscopy to identify the chemical species present in several molten salt compositions at experimentally relevant reaction conditions to elucidate a molecular basis for the reactivity observed. We then employ Lewis neutral KGaI4 molten salts to prepare high-quality In1-xGaxAs and In1-xGaxP nanocrystals and demonstrate that deviation from Lewis neutral conditions accelerate nanocrystal decomposition in the case of III-arsenide materials. Further, we expand to KAlI4-based molten salts to prepare In1-x-yGaxAlyAs nanocrystals which represent an example of solution-synthesized quaternary III-V nanocrystals. These insights provide a molecular basis for the rational development of molten salt solvents, thus allowing the preparation of a diverse array of multicomponent III-V colloidal nanocrystals.

6.
Nat Mater ; 22(10): 1167-1168, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758975
7.
Nat Chem ; 15(12): 1722-1729, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37537297

RESUMO

Two-dimensional (2D) transition-metal carbides and nitrides (MXenes) combine the electronic and mechanical properties of 2D inorganic crystals with chemically modifiable surfaces, which provides an ideal platform for both fundamental and applied studies of interfaces. Good progress has been achieved in the functionalization of MXenes with small inorganic ligands, but relatively little work has been reported on the covalent bonding of various organic groups to MXene surfaces. Here we synthesize a family of hybrid MXenes (h-MXenes) that incorporate amido- and imido-bonding between organic and inorganic parts by reacting halogen-terminated MXenes with deprotonated organic amines. The resulting hybrid structures unite tailorability of organic molecules with electronic connectivity and other properties of inorganic 2D materials. Describing the structure of h-MXene necessitates the integration of concepts from coordination chemistry, self-assembled monolayers and surface science. The optical properties of h-MXenes reveal coherent coupling between the organic and inorganic constituents. h-MXenes also exhibit superior stability against hydrolysis.

8.
Acc Chem Res ; 56(17): 2286-2297, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37552212

RESUMO

ConspectusColloidal nanocrystals (NCs) have emerged as a diverse class of materials with tunable composition, size, shape, and surface chemistry. From their facile syntheses to unique optoelectronic properties, these solution-processed nanomaterials are a promising alternative to materials grown as bulk crystals or by vapor-phase methods. However, the integration of colloidal nanomaterials in real-world devices is held back by challenges in making patterned NC films with the resolution, throughput, and cost demanded by device components and applications. Therefore, suitable approaches to pattern NCs need to be established to aid the transition from individual proof-of-concept NC devices to integrated and multiplexed technological systems.In this Account, we discuss the development of stimuli-sensitive surface ligands that enable NCs to be patterned directly with good pattern fidelity while retaining desirable properties. We focus on rationally selected ligands that enable changes in the NC dispersibility by responding to light, electron beam, and/or heat. First, we summarize the fundamental forces between colloidal NCs and discuss the principles behind NC stabilization/destabilization. These principles are applied to understanding the mechanisms of the NC dispersibility change upon stimuli-induced ligand modifications. Six ligand-based patterning mechanisms are introduced: ligand cross-linking, ligand decomposition, ligand desorption, in situ ligand exchange, ion/ligand binding, and ligand-aided increase of ionic strength. We discuss examples of stimuli-sensitive ligands that fall under each mechanism, including their chemical transformations, and address how these ligands are used to pattern either sterically or electrostatically stabilized colloidal NCs. Following that, we explain the rationale behind the exploration of different types of stimuli, as well as the advantages and disadvantages of each stimulus.We then discuss relevant figures-of-merit that should be considered when choosing a particular ligand chemistry or stimulus for patterning NCs. These figures-of-merit pertain to either the pattern quality (e.g., resolution, edge and surface roughness, layer thickness), or to the NC material quality (e.g., photo/electro-luminescence, electrical conductivity, inorganic fraction). We outline the importance of these properties and provide insights on optimizing them. Both the pattern quality and NC quality impact the performance of patterned NC devices such as field-effect transistors, light-emitting diodes, color-conversion pixels, photodetectors, and diffractive optical elements. We also give examples of proof-of-concept patterned NC devices and evaluate their performance. Finally, we provide an outlook on further expanding the chemistry of stimuli-sensitive ligands, improving the NC pattern quality, progress toward 3D printing, and other potential research directions. Ultimately, we hope that the development of a patterning toolbox for NCs will expedite their implementation in a broad range of applications.

9.
Sci Adv ; 9(29): eadg5858, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478187

RESUMO

Semiconductor-based biointerfaces are typically established either on the surface of the plasma membrane or within the cytoplasm. In Gram-negative bacteria, the periplasmic space, characterized by its confinement and the presence of numerous enzymes and peptidoglycans, offers additional opportunities for biomineralization, allowing for nongenetic modulation interfaces. We demonstrate semiconductor nanocluster precipitation containing single- and multiple-metal elements within the periplasm, as observed through various electron- and x-ray-based imaging techniques. The periplasmic semiconductors are metastable and display defect-dominant fluorescent properties. Unexpectedly, the defect-rich (i.e., the low-grade) semiconductor nanoclusters produced in situ can still increase adenosine triphosphate levels and malate production when coupled with photosensitization. We expand the sustainability levels of the biohybrid system to include reducing heavy metals at the primary level, building living bioreactors at the secondary level, and creating semi-artificial photosynthesis at the tertiary level. The biomineralization-enabled periplasmic biohybrids have the potential to serve as defect-tolerant platforms for diverse sustainable applications.


Assuntos
Biomineralização , Periplasma , Periplasma/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Fotossíntese
10.
J Am Chem Soc ; 145(30): 16429-16448, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466972

RESUMO

Semiconductors are commonly divided into materials with direct or indirect band gaps based on the relative positions of the top of the valence band and the bottom of the conduction band in crystal momentum (k) space. It has, however, been debated if k is a useful quantum number to describe the band structure in quantum-confined nanocrystalline systems, which blur the distinction between direct and indirect gap semiconductors. In bulk III-V semiconductor alloys like In1-xGaxP, the band structure can be tuned continuously from the direct- to indirect-gap by changing the value of x. The effect of strong quantum confinement on the direct-to-indirect transition in this system has yet to be established because high-quality colloidal nanocrystal samples have remained inaccessible. Herein, we report one of the first systematic studies of ternary III-V nanocrystals by utilizing an optimized molten-salt In-to-Ga cation exchange protocol to yield bright In1-xGaxP/ZnS core-shell particles with photoluminescence quantum yields exceeding 80%. We performed two-dimensional solid-state NMR studies to assess the alloy homogeneity and the extent of surface oxidation in In1-xGaxP cores. The radiative decay lifetime for In1-xGaxP/ZnS monotonically increases with higher gallium content. Transient absorption studies on In1-xGaxP/ZnS nanocrystals demonstrate signatures of direct- and indirect-like behavior based on the presence or absence, respectively, of excitonic bleach features. Atomistic electronic structure calculations based on the semi-empirical pseudopotential model are used to calculate absorption spectra and radiative lifetimes and evaluate band-edge degeneracy; the resulting calculated electronic properties are consistent with experimental observations. By studying photoluminescence characteristics at elevated temperatures, we demonstrate that a reduced lattice mismatch at the III-V/II-VI core-shell interface can enhance the thermal stability of emission. These insights establish cation exchange in molten inorganic salts as a viable synthetic route to nontoxic, high-quality In1-xGaxP/ZnS QD emitters with desirable optoelectronic properties.

11.
Chem Rev ; 123(12): 7890-7952, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37311205

RESUMO

Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.

13.
Nat Mater ; 22(6): 737-745, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37024592

RESUMO

Stretchable light-emitting materials are the key components for realizing skin-like displays and optical biostimulation. All the stretchable emitters reported to date, to the best of our knowledge, have been based on electroluminescent polymers that only harness singlet excitons, limiting their theoretical quantum yield to 25%. Here we present a design concept for imparting stretchability onto electroluminescent polymers that can harness all the excitons through thermally activated delayed fluorescence, thereby reaching a near-unity theoretical quantum yield. We show that our design strategy of inserting flexible, linear units into a polymer backbone can substantially increase the mechanical stretchability without affecting the underlying electroluminescent processes. As a result, our synthesized polymer achieves a stretchability of 125%, with an external quantum efficiency of 10%. Furthermore, we demonstrate a fully stretchable organic light-emitting diode, confirming that the proposed stretchable thermally activated delayed fluorescence polymers provide a path towards simultaneously achieving desirable electroluminescent and mechanical characteristics, including high efficiency, brightness, switching speed and stretchability as well as low driving voltage.

14.
Science ; 379(6638): 1242-1247, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36952427

RESUMO

Two-dimensional transition-metal carbides and nitrides (MXenes) are a large family of materials actively studied for various applications, especially in the field of energy storage. MXenes are commonly synthesized by etching the layered ternary compounds, called MAX phases. We demonstrate a direct synthetic route for scalable and atom-economic synthesis of MXenes, including compounds that have not been synthesized from MAX phases, by the reactions of metals and metal halides with graphite, methane, or nitrogen. The direct synthesis enables chemical vapor deposition growth of MXene carpets and complex spherulite-like morphologies that form through buckling and release of MXene carpet to expose fresh surface for further reaction. The directly synthesized MXenes showed excellent energy storage capacity for lithium-ion intercalation.

15.
Nano Lett ; 23(7): 2677-2686, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36917456

RESUMO

MXenes have the potential for efficient light-to-heat conversion in photothermal applications. To effectively utilize MXenes in such applications, it is important to understand the underlying nonequilibrium processes, including electron-phonon and phonon-phonon couplings. Here, we use transient electron and X-ray diffraction to investigate the heating and cooling of photoexcited MXenes at femtosecond to nanosecond time scales. Our results show extremely strong electron-phonon coupling in Ti3C2-based MXenes, resulting in lattice heating within a few hundred femtoseconds. We also systematically study heat dissipation in MXenes with varying film thicknesses, chemical surface terminations, flake sizes, and annealing conditions. We find that the thermal boundary conductance (TBC) governs the thermal relaxation in films thinner than the optical penetration depth. We achieve a 2-fold enhancement of the TBC, reaching 20 MW m-2 K-1, by controlling the flake size or chemical surface termination, which is promising for engineering heat dissipation in photothermal and thermoelectric applications of the MXenes.

16.
Nano Lett ; 23(4): 1467-1473, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36753635

RESUMO

We report spin-polarized transient absorption for colloidal CdSe nanoplatelets as functions of thickness (2-6 monolayer thickness) and core/shell motif. Using electro-optical modulation of co- and cross-polarization pump-probe combinations, we sensitively observe spin-polarized transitions. Core-only nanoplatelets exhibit few-picosecond spin lifetimes that weakly increase with layer thickness. The spectral content of differenced spin-polarized signals indicate biexciton binding energies that decrease with increasing thickness and smaller values than previously reported. Shell growth of CdS with controlled thicknesses, which partially delocalize the electron from the hole, significantly increases the spin lifetime to ∼49 ps at room temperature. Implementation of ZnS shells, which do not alter delocalization but do alter surface termination, increased spin lifetimes up to ∼100 ps, bolstering the interpretation that surface termination heavily influences spin coherence, likely due to passivation of dangling bonds. Spin precession in magnetic fields both confirms long coherence lifetime at room temperature and yields the excitonic g factor.

17.
Nat Commun ; 14(1): 49, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599825

RESUMO

All-inorganic nanocrystals (NCs) are of great importance in a range of electronic devices. However, current all-inorganic NCs suffer from limitations in their optical properties, such as low fluorescence efficiencies. Here, we develop a general surface treatment strategy to obtain intensely luminescent all-inorganic NCs (ILANs) by using designed metal salts with noncoordinating anions that play a dual role in the surface treatment process: (i) removing the original organic ligands and (ii) binding to unpassivated Lewis basic sites to preserve the photoluminescent (PL) properties of the NCs. The absolute photoluminescence quantum yields (PLQYs) of red-emitting CdSe/ZnS NCs, green-emitting CdSe/CdZnSeS/ZnS NCs and blue-emitting CdZnS/ZnS NCs in polar solvents are 97%, 80% and 72%, respectively. Further study reveals that the passivated Lewis basic sites of ILANs by metal cations boost the efficiency of radiative recombination of electron-hole pairs. While the passivation of Lewis basic sites leads to a high PLQY of ILANs, the exposed Lewis acidic sites provide the possibility for in situ tuning of the functions of NCs, creating opportunities for direct optical patterning of functional NCs with high resolution.

18.
ACS Nano ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36621974

RESUMO

Group III nitrides are of great technological importance for electronic devices. These materials have been widely manufactured via high-temperature methods such as physical vapor transport (PVT), chemical vapor deposition (CVD), and hydride vapor phase epitaxy (HVPE). The preparation of group III nitrides by colloidal synthesis methods would provide significant advantages in the form of optical tunability via size and shape control and enable cost reductions through scalable solution-based device integration. Solution syntheses of III-nitride nanocrystals, however, have been scarce, and the quality of the synthesized products has been unsatisfactory for practical use. Here, we report that incorporating a molten salt phase in solution synthesis can provide a viable option for producing crystalline III-nitride nanomaterials. Crystalline GaN and AlN nanomaterials can be grown in a biphasic molten-salt/organic-solvent mixture under an ammonia atmosphere at moderate temperatures (less than 300 °C) and stabilized under ambient conditions by postsynthetic treatment with organic surface ligands. We suggest that microscopic reversibility of monomer attachment, which is essential for crystalline growth, can be achieved in molten salt during the nucleation and the growth of the III-nitride nanocrystals. We also show that increased ammonia pressure increases the size of the GaN nanocrystals produced. This work demonstrates that use of molten salt and high-pressure reactants significantly expands the chemical scope of solution synthesis of inorganic nanomaterials.

19.
J Am Chem Soc ; 144(41): 19026-19037, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194683

RESUMO

Photothermoelectric (PTE) materials are promising candidates for solar energy harvesting and photodetection applications, especially for near-infrared (NIR) wavelengths. Although the processability and tunability of organic materials are highly advantageous, examples of organic PTE materials are comparatively rare and their PTE performance is typically limited by poor photothermal (PT) conversion. Here, we report the use of redox-active Sn complexes of tetrathiafulvalene-tetrathiolate (TTFtt) as transmetalating agents for the synthesis of presynthetically redox tuned NiTTFtt materials. Unlike the neutral material NiTTFtt, which exhibits n-type glassy-metallic conductivity, the reduced materials Li1.2Ni0.4[NiTTFtt] and [Li(THF)1.5]1.2Ni0.4[NiTTFtt] (THF = tetrahydrofuran) display physical characteristics more consistent with p-type semiconductors. The broad spectral absorption and electrically conducting nature of these TTFtt-based materials enable highly efficient NIR-thermal conversion and good PTE performance. Furthermore, in contrast to conventional PTE composites, these NiTTFtt coordination polymers are notable as single-component PTE materials. The presynthetically tuned metal-to-insulator transition in these NiTTFtt systems directly modulates their PT and PTE properties.

20.
Nature ; 611(7936): 479-484, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36289346

RESUMO

Conducting organic materials, such as doped organic polymers1, molecular conductors2,3 and emerging coordination polymers4, underpin technologies ranging from displays to flexible electronics5. Realizing high electrical conductivity in traditionally insulating organic materials necessitates tuning their electronic structure through chemical doping6. Furthermore, even organic materials that are intrinsically conductive, such as single-component molecular conductors7,8, require crystallinity for metallic behaviour. However, conducting polymers are often amorphous to aid durability and processability9. Using molecular design to produce high conductivity in undoped amorphous materials would enable tunable and robust conductivity in many applications10, but there are no intrinsically conducting organic materials that maintain high conductivity when disordered. Here we report an amorphous coordination polymer, Ni tetrathiafulvalene tetrathiolate, which displays markedly high electronic conductivity (up to 1,200 S cm-1) and intrinsic glassy-metallic behaviour. Theory shows that these properties are enabled by molecular overlap that is robust to structural perturbations. This unusual set of features results in high conductivity that is stable to humid air for weeks, pH 0-14 and temperatures up to 140 °C. These findings demonstrate that molecular design can enable metallic conductivity even in heavily disordered materials, raising fundamental questions about how metallic transport can exist without periodic structure and indicating exciting new applications for these materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...