Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(17): e36751, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39263121

RESUMO

Cardiovascular disease (CVD) is connected with irregular cardiac electrical activity, which can be seen in ECG alterations. Due to its convenience and non-invasive aspect, the ECG is routinely exploited to identify different arrhythmias and automatic ECG recognition is needed immediately. In this paper, enhancement for the detection of CVDs such as Ventricular Tachycardia (VT), Premature Ventricular Contraction (PVC) and ST Change (ST) arrhythmia using different dimensionality reduction techniques and multiple classifiers are presented. Three-dimensionality reduction methods, such as Local Linear Embedding (LLE), Diffusion Maps (DM), and Laplacian Eigen (LE), are employed. The dimensionally reduced ECG samples are further feature selected with Cuckoo Search (CS) and Harmonic Search Optimization (HSO) algorithms. A publicly available MIT-BIH (Physionet) - VT database, PVC database, ST Change database and NSR database were used in this work. The cardiac vascular disturbances are classified by using seven classifiers such as Gaussian Mixture Model (GMM), Expectation Maximization (EM), Non-linear Regression (NLR), Logistic Regression (LR), Bayesian Linear Discriminant Analysis (BDLC), Detrended Fluctuation Analysis (Detrended FA), and Firefly. For different classes, the average overall accuracy of the classification techniques is 55.65 % when without CS and HSO feature selection, 64.36 % when CS feature selection is used, and 75.39 % when HSO feature selection is used. Also, to improve the performance of classifiers, the hyperparameters of four classifiers (GMM, EM, BDLC and Firefly) are tuned with the Adam and Grid Search Optimization (GSO) approaches. The average accuracy of classification for the CS feature-based classifiers that used GSO and Adam hyperparameter tuning was 79.92 % and 85.78 %, respectively. The average accuracy of classification for the HSO feature-based classifiers that used GSO and Adam hyperparameter tuning was 86.87 % and 93.77 %, respectively. The performance of the classifier is analyzed based on the accuracy parameter for both with and without feature selection methods and with hyperparameter tuning techniques. In the case of ST vs. NSR, a higher accuracy of 98.92 % is achieved for the LLE dimensionality reduction with HSO feature selection for the GMM classifier with Adam's hyperparameter tuning approach. The GMM classifier with the Adam hyperparameter tuning approach with 98.92 % accuracy in detecting ST vs. NSR cardiac disease is outperforming all other classifiers and methodologies.

2.
Sci Rep ; 14(1): 21437, 2024 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271921

RESUMO

The world has a higher count of death rates as a result of Alcohol consumption. Identification is possible because Alcoholic EEG waves have a certain behavior that is totally different compared to the non-alcoholic individual. The available approaches take longer to provide the feedback because they analyze the data manually. For this reason, in the present paper we propose a novel approach applied to detect alcoholic EEG signals automatically by using deep learning methods. Our strategy has advantages as far as fast detection is concerned; hence people can help immediately when there is a need. The potential for a significant decrease in deaths from alcohol poisoning and improvement to public health is presented by this advancement. In order to create clusters and classify the alcoholic EEG signals, this research uses a cascaded process. To begin with, an initial clustering and feature extraction is done by LASSO regression. After that, a variety of meta-heuristics algorithms like Particle Swarm Optimization (PSO), Binary Coding Harmony Search (BCHS) as well as Binary Dragonfly Algorithm (BDA) are employed for feature minimization. When this method is used, normal and alcoholic EEG signals may be differentiated using non-linear features. PSO, BCHS, and BDA features allow for estimation of statistical parameters through t-test, Friedman statistic test, Mann-Whitney U test, and Z-Score with corresponding p-values for alcoholic EEG signals. Lastly, classification is done by the use of support vector machines (SVM) (including linear, polynomial, and Gaussian kernels), random forests, artificial neural networks (ANN), enhanced artificial neural networks (EANN), and LSTM models. Results showed that LASSO regression with BDA-based EANN proposed classifier have a classification accuracy of 99.59%, indicating that our method is highly accurate at classifying alcoholic EEG signals.


Assuntos
Alcoolismo , Algoritmos , Eletroencefalografia , Redes Neurais de Computação , Humanos , Eletroencefalografia/métodos , Alcoolismo/diagnóstico , Alcoolismo/fisiopatologia , Aprendizado Profundo , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA