Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(1): e1010200, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025968

RESUMO

The Epstein-Barr Virus (EBV) is involved in the etiology of multiple hematologic and epithelial human cancers. EBV+ tumors employ multiple immune escape mechanisms, including the recruitment of immunosuppressive regulatory T cells (Treg). Here, we show some EBV+ tumor cells express high levels of the chemokines CCL17 and CCL22 both in vitro and in vivo and that this expression mirrors the expression levels of expression of the EBV LMP1 gene in vitro. Patient samples from lymphoblastic (Hodgkin lymphoma) and epithelial (nasopharyngeal carcinoma; NPC) EBV+ tumors revealed CCL17 and CCL22 expression of both tumor cell-intrinsic and -extrinsic origin, depending on tumor type. NPCs grown as mouse xenografts likewise showed both mechanisms of chemokine production. Single cell RNA-sequencing revealed in vivo tumor cell-intrinsic CCL17 and CCL22 expression combined with expression from infiltrating classical resident and migratory dendritic cells in a CT26 colon cancer mouse tumor engineered to express LMP1. These data suggest that EBV-driven tumors employ dual mechanisms for CCL17 and CCL22 production. Importantly, both in vitro and in vivo Treg migration was effectively blocked by a novel, small molecule antagonist of CCR4, CCR4-351. Antagonism of the CCR4 receptor may thus be an effective means of activating the immune response against a wide spectrum of EBV+ tumors.


Assuntos
Quimiocina CCL17/imunologia , Quimiocina CCL22/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Neoplasias/imunologia , Neoplasias/virologia , Linfócitos T Reguladores/imunologia , Animais , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4 , Xenoenxertos , Doença de Hodgkin/imunologia , Doença de Hodgkin/virologia , Humanos , Camundongos , Carcinoma Nasofaríngeo/imunologia , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/imunologia , Neoplasias Nasofaríngeas/virologia
2.
J Immunother Cancer ; 8(2)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33243932

RESUMO

BACKGROUND: Checkpoint inhibitors (CPIs) such as anti-PD(L)-1 and anti-CTLA-4 antibodies have resulted in unprecedented rates of antitumor responses and extension of survival of patients with a variety of cancers. But some patients fail to respond or initially respond but later relapse as they develop resistance to immune therapy. One of the tumor-extrinsic mechanisms for resistance to immune therapy is the accumulation of regulatory T cells (Treg) in tumors. In preclinical and clinical studies, it has been suggested that tumor trafficking of Treg is mediated by CC chemokine receptor 4 (CCR4). Over 90% of human Treg express CCR4 and migrate toward CCL17 and CCL22, two major CCR4 ligands that are either high at baseline or upregulated in tumors on CPI treatment. Hence, CCR4 antagonism has the potential to be an effective antitumor treatment by reducing the accumulation of Treg into the tumor microenvironment (TME). METHODS: We developed in vitro and in vivo models to assess Treg migration and antitumor efficacy using a potent and selective CCR4 antagonist, CCR4-351. We used two separate tumor models, Pan02 and CT26 mouse tumors, that have high and low CCR4 ligand expression, respectively. Tumor growth inhibition as well as the frequency of tumor-infiltrating Treg and effector T cells was assessed following the treatment with CCR4 antagonist alone or in combination with CPI. RESULTS: Using a selective and highly potent, novel small molecule inhibitor of CCR4, we demonstrate that migration of CCR4+ Treg into the tumor drives tumor progression and resistance to CPI treatment. In tumor models with high baseline levels of CCR4 ligands, blockade of CCR4 reduced the number of Treg and enhanced antitumor immune activity. Notably, in tumor models with low baseline level of CCR4 ligands, treatment with immune CPIs resulted in significant increases of CCR4 ligands and Treg numbers. Inhibition of CCR4 reduced Treg frequency and potentiated the antitumor effects of CPIs. CONCLUSION: Taken together, we demonstrate that CCR4-dependent Treg recruitment into the tumor is an important tumor-extrinsic mechanism for immune resistance. Blockade of CCR4 led to reduced frequency of Treg and resulted in increased antitumor activity, supporting the clinical development of CCR4 inhibitors in combination with CPI for the treatment of cancer. STATEMENT OF SIGNIFICANCE: CPI upregulates CCL17 and CCL22 expression in tumors and increases Treg migration into the TME. Pharmacological antagonism of the CCR4 receptor effectively inhibits Treg recruitment and results in enhanced antitumor efficacy either as single agent in CCR4 ligandhigh tumors or in combination with CPIs in CCR4 ligandlow tumors.


Assuntos
Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Receptores CCR4/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Med Chem ; 63(15): 8584-8607, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32667798

RESUMO

The C-C chemokine receptor 4 (CCR4) is broadly expressed on regulatory T cells (Treg) as well as other circulating and tissue-resident T cells. Treg can be recruited to the tumor microenvironment (TME) through the C-C chemokines CCL17 and CCL22. Treg accumulation in the TME has been shown to dampen the antitumor immune response and is thought to be an important driver in tumor immune evasion. Preclinical and clinical data suggest that reducing the Treg population in the TME can potentiate the antitumor immune response of checkpoint inhibitors. We have developed small-molecule antagonists of CCR4, featuring a novel piperidinyl-azetidine motif, that inhibit the recruitment of Treg into the TME and elicit antitumor responses as a single agent or in combination with an immune checkpoint blockade. The discovery of these potent, selective, and orally bioavailable CCR4 antagonists, and their activity in in vitro and in vivo models, is described herein.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Azetidinas/química , Azetidinas/farmacologia , Receptores CCR4/antagonistas & inibidores , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Azetidinas/farmacocinética , Azetidinas/uso terapêutico , Linhagem Celular Tumoral , Cães , Humanos , Macaca fascicularis , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Piperidinas/química , Piperidinas/farmacocinética , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Receptores CCR4/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
4.
J Med Chem ; 62(13): 6190-6213, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31259550

RESUMO

Recruitment of suppressive CD4+ FOXP3+ regulatory T cells (Treg) to the tumor microenvironment (TME) has the potential to weaken the antitumor response in patients receiving treatment with immuno-oncology (IO) agents. Human Treg express CCR4 and can be recruited to the TME through the CC chemokine ligands CCL17 and CCL22. In some cancers, Treg accumulation correlates with poor patient prognosis. Preclinical data suggests that preventing the recruitment of Treg and increasing the population of activated effector T cells (Teff) in the TME can potentiate antitumor immune responses. We developed a novel series of potent, orally bioavailable small molecule antagonists of CCR4. From this series, several compounds exhibited high potency in distinct functional assays in addition to good in vitro and in vivo ADME properties. The design, synthesis, and SAR of this series and confirmation of its in vivo activity are reported.


Assuntos
Movimento Celular/efeitos dos fármacos , Pirazinas/farmacologia , Pirazóis/farmacologia , Receptores CCR4/antagonistas & inibidores , Linfócitos T Reguladores/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Animais , Cicloexanos/síntese química , Cicloexanos/farmacocinética , Cicloexanos/farmacologia , Descoberta de Drogas , Humanos , Camundongos Transgênicos , Estrutura Molecular , Piperazinas/síntese química , Piperazinas/farmacocinética , Piperazinas/farmacologia , Pirazinas/síntese química , Pirazinas/farmacocinética , Pirazóis/síntese química , Pirazóis/farmacocinética , Ratos , Relação Estrutura-Atividade
5.
ACS Med Chem Lett ; 9(10): 953-955, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30344896

RESUMO

Recruitment of naturally occurring suppressive CD4+, CD25+, and FOXP3+ regulatory T cells (Treg) to the tumor microenvironment (TME) has the potential to weaken the antitumor response in patients receiving treatment with immuno-oncology (IO) agents. Human Treg express CCR4 and can be recruited to the TME through the C-C chemokines CCL17 and CCL22. We have recently developed a series of potent, orally bioavailable small molecule antagonists of CCR4 that can block recruitment of Treg into the TME.

7.
Nat Immunol ; 13(4): 396-404, 2012 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-22366892

RESUMO

Immunoglobulin E (IgE) antibodies are pathogenic in asthma and allergic diseases, but the in vivo biology of IgE-producing (IgE(+)) cells is poorly understood. A model of the differentiation of IgE(+) B cells proposes that IgE(+) cells develop through a germinal-center IgG1(+) intermediate and that IgE memory resides in the compartment of IgG1(+) memory B cells. Here we have used a reporter mouse expressing green fluorescent protein associated with membrane IgE transcripts (IgE-GFP) to assess in vivo IgE responses. In contrast to the IgG1-centered model of IgE switching and memory, we found that IgE(+) cells developed through a germinal-center IgE(+) intermediate to form IgE(+) memory B cells and plasma cells. Our studies delineate a new model for the in vivo biology of IgE switching and memory.


Assuntos
Linfócitos B/citologia , Diferenciação Celular/imunologia , Centro Germinativo/citologia , Imunoglobulina E/imunologia , Memória Imunológica/imunologia , Plasmócitos/imunologia , Transferência Adotiva , Animais , Linfócitos B/imunologia , Separação Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Técnicas de Introdução de Genes , Centro Germinativo/imunologia , Humanos , Switching de Imunoglobulina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Plasmócitos/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Proc Natl Acad Sci U S A ; 107(52): 22587-92, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21149737

RESUMO

Memory T cells of the effector type (T(EM)) account for the characteristic rapidity of memory T-cell responses, whereas memory T cells of the central type (T(CM)) account for long-lasting, vigorously proliferating memory T-cell responses. How antigen-stimulated (primed) T cells develop into different memory T-cell subsets with diverse tissue distributions is largely unknown. Here we show that after respiratory tract infection of mice with influenza virus, viral antigen associated with dendritic cells (DCs) was abundant in lung-draining lymph nodes (DLN) and the spleen for more than a week but was scant and transient in nondraining lymph nodes (NDLN). Correspondingly, activated CD8 T cells proliferated extensively in DLN and the spleen but minimally in NDLN. Strikingly, however, although most persisting CD8 T cells in DLN and spleen exhibited the T(EM) phenotype, those persisting in NDLN exhibited the T(CM) phenotype. Reducing antigen exposure by depleting DCs at the peak of primary T-cell responses enhanced the development of T(CM), whereas subjecting primed CD8 T cells from NDLN to additional antigen stimulation inhibited T(CM) development. These findings demonstrate that differences in persistence of antigen-bearing DCs in various tissues regulate the tissue-specific pattern of memory CD8 T-cell development. The findings have significant implications for design of vaccines and immunization strategies.


Assuntos
Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Memória Imunológica/imunologia , Transferência Adotiva , Animais , Antígenos Virais/imunologia , Células da Medula Óssea/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/transplante , Citometria de Fluxo , Interferon gama/imunologia , Interferon gama/metabolismo , Linfonodos/imunologia , Linfonodos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Oligopeptídeos/imunologia , Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Baço/imunologia , Baço/virologia
9.
Proc Natl Acad Sci U S A ; 106(8): 2741-6, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19202065

RESUMO

Studies have shown that T-cell-dendritic cell (DC) interaction is required for efficient DC maturation. However, the identities of the molecules that mediate the interaction in vivo are largely unknown. Here, we show that maturation of DCs as well as CD8 T-cell responses were impaired in B7-H1-deficient (B7-H1(-/-)) mice to influenza virus infection. Both defects were restored by transferring B7-H1-expressing naïve T cells into B7-H1(-/-) mice. Similarly, transferring DCs from wild-type mice or from RAG1(-/-) mice that had been injected with B7-H1-expressing naïve T cells also restored CD8 T-cell responses in B7-H1(-/-) mice. These results demonstrate that B7-H1 on naïve T cells is required to condition immature DCs to undergo efficient maturation when they encounter microbial infection. In return, the mature DCs stimulate a robust T-cell response against the infecting pathogen.


Assuntos
Antígeno B7-1/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/citologia , Glicoproteínas de Membrana/imunologia , Peptídeos/imunologia , Animais , Antígeno B7-1/genética , Antígeno B7-H1 , Proliferação de Células , Proteínas de Homeodomínio/genética , Ativação Linfocitária , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Peptídeos/genética
10.
J Immunol ; 180(1): 171-8, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18097017

RESUMO

Following influenza virus infection, memory CD8 T cells are found in both lymphoid and nonlymphoid organs, where they exhibit striking differences in survival. We have assessed persistence, phenotype, and function of memory CD8 T cells expressing the same TCR in the airways, lung parenchyma, and spleen following influenza virus infection in mice. In contrast to memory CD8 T cells in the spleen, those residing in the airways gradually lost expression of IL-7R and IL-15R, did not respond to IL-7 and/or IL-15, and exhibited poor survival both in vivo and in vitro. Following adoptive transfer into the airways, splenic memory CD8 T cells also down-regulated IL-7R and IL-15R expression and failed to undergo homeostatic proliferation. Thus, although cytokines IL-7 and IL-15 play an essential role in memory CD8 T cell homeostasis in lymphoid organs, the levels of IL-7R and IL-15R expression likely set a threshold for the homeostatic regulation of memory CD8 T cells in the airways. These findings provide a molecular explanation for the gradual loss of airway memory CD8 T cells and heterosubtypic immunity following influenza infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Influenza Humana/imunologia , Pulmão/imunologia , Receptores de Interleucina-15/deficiência , Receptores de Interleucina-7/deficiência , Animais , Regulação para Baixo , Humanos , Interleucina-15/genética , Interleucina-15/metabolismo , Interleucina-7/genética , Interleucina-7/metabolismo , Pulmão/virologia , Camundongos , Camundongos Transgênicos , Baço/imunologia , Baço/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...