Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 66(7): 2013-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25697791

RESUMO

Glutamine synthetase and asparagine synthetase are two master enzymes involved in ammonium assimilation in plants. Their roles in nitrogen remobilization and nitrogen use efficiency have been proposed. In this report, the genes coding for the cytosolic glutamine synthetases (HvGS1) and asparagine synthetases (HvASN) in barley were identified. In addition to the three HvGS1 and two HvASN sequences previously reported, two prokaryotic-like HvGS1 and three HvASN cDNA sequences were identified. Gene structures were then characterized, obtaining full genomic sequences. The response of the five HvGS1 and five HvASN genes to leaf senescence was then studied. Developmental senescence was studied using primary and flag leaves. Dark-exposure or low-nitrate conditions were also used to trigger stress-induced senescence. Well-known senescence markers such as the chlorophyll and Rubisco contents were monitored in order to characterize senescence levels in the different leaves. The three eukaryotic-like HvGS1_1, HvGS1_2, and HvGS1_3 sequences showed the typical senescence-induced reduction in gene expression described in many plant species. By contrast, the two prokaryotic-like HvGS1_4 and HvGS1_5 sequences were repressed by leaf senescence, similar to the HvGS2 gene, which encodes the chloroplast glutamine synthetase isoenzyme. There was a greater contrast in the responses of the five HvASN and this suggested that these genes are needed for N remobilization in senescing leaves only when plants are well fertilized with nitrate. Responses of the HvASN sequences to dark-induced senescence showed that there are two categories of asparagine synthetases, one induced in the dark and the other repressed by the same conditions.


Assuntos
Aspartato-Amônia Ligase/genética , Regulação da Expressão Gênica de Plantas , Glutamato-Amônia Ligase/genética , Hordeum/enzimologia , Aspartato-Amônia Ligase/metabolismo , Senescência Celular , Clorofila/metabolismo , Citosol/enzimologia , DNA Complementar/genética , Glutamato-Amônia Ligase/metabolismo , Hordeum/genética , Hordeum/fisiologia , Nitratos/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
2.
Plant Physiol ; 131(1): 345-58, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12529542

RESUMO

Improving plant nitrogen (N) use efficiency or controlling soil N requires a better knowledge of the regulation of plant N metabolism. This could be achieved using Arabidopsis as a model genetic system, taking advantage of the natural variation available among ecotypes. Here, we describe an extensive study of N metabolism variation in the Bay-0 x Shahdara recombinant inbred line population, using quantitative trait locus (QTL) mapping. We mapped QTL for traits such as shoot growth, total N, nitrate, and free-amino acid contents, measured in two contrasting N environments (contrasting nitrate availability in the soil), in controlled conditions. Genetic variation and transgression were observed for all traits, and most of the genetic variation was identified through QTL and QTL x QTL epistatic interactions. The 48 significant QTL represent at least 18 loci that are polymorphic between parents; some may correspond to known genes from the N metabolic pathway, but others represent new genes controlling or interacting with N physiology. The correlations between traits are dissected through QTL colocalizations: The identification of the individual factors contributing to the regulation of different traits sheds new light on the relations among these characters. We also point out that the regulation of our traits is mostly specific to the N environment (N availability). Finally, we describe four interesting loci at which positional cloning is feasible.


Assuntos
Arabidopsis/genética , Nitrogênio/metabolismo , Locos de Características Quantitativas/genética , Aminoácidos/metabolismo , Análise de Variância , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Cromossomos de Plantas/genética , Nitratos/metabolismo , Nitrogênio/farmacologia , Fenótipo , Mapeamento Físico do Cromossomo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Característica Quantitativa Herdável , Projetos de Pesquisa
3.
Plant Cell ; 14(10): 2577-90, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12368506

RESUMO

Pectins are a highly complex family of cell wall polysaccharides. As a result of a lack of specific mutants, it has been difficult to study the biosynthesis of pectins and their role in vivo. We have isolated two allelic mutants, named quasimodo1 (qua1-1 and qua1-2), that are dwarfed and show reduced cell adhesion. Mutant cell walls showed a 25% reduction in galacturonic acid levels compared with the wild type, indicating reduced pectin content, whereas neutral sugars remained unchanged. Immersion immunofluorescence with the JIM5 and JIM7 monoclonal antibodies that recognize homogalacturonan epitopes revealed less labeling of mutant roots compared with the wild type. Both mutants carry a T-DNA insertion in a gene (QUA1) that encodes a putative membrane-bound glycosyltransferase of family 8. We present evidence for the possible involvement of a glycosyltransferase of this family in the synthesis of pectic polysaccharides, suggesting that other members of this large multigene family in Arabidopsis also may be important for pectin biosynthesis. The mutant phenotype is consistent with a central role for pectins in cell adhesion.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glicosiltransferases/genética , Proteínas de Membrana/genética , Pectinas/biossíntese , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Adesão Celular/genética , Adesão Celular/fisiologia , Parede Celular/genética , Parede Celular/fisiologia , Imunofluorescência , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/metabolismo , Ácidos Hexurônicos/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Fenótipo , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...