Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(21)2023 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-37947618

RESUMO

Cataract is the leading cause of blindness worldwide. It can be treated by surgery, whereby the damaged crystalline lens is replaced by a synthetic lens. Although cataract surgery is highly effective, a relatively common complication named posterior capsular opacification (PCO) leads to secondary loss of vision. PCO is caused by abnormal proliferation and migration of residual lens epithelial cells (LECs) that were not removed during the surgery, which results in interruption to the passage of light. Despite technical improvements to the surgery, this complication has not been eradicated. Efforts are being made to identify drugs that can be applied post-surgery, to inhibit PCO development. Towards the goal of identifying such drugs, we used zebrafish embryos homozygous for a mutation in plod3 that develop a lens phenotype with characteristics of PCO. Using both biased and unbiased approaches, we identified small molecules that can block the lens phenotype of the mutants. Our findings confirm the relevance of zebrafish plod3 mutants' lens phenotype as a model for lens epithelium-derived cataract and add to our understanding of the molecular mechanisms that contribute to the development of this pathology. This understanding should help in the development of strategies for PCO prevention.


Assuntos
Opacificação da Cápsula , Cápsula do Cristalino , Cristalino , Animais , Peixe-Zebra , Cápsula do Cristalino/patologia , Opacificação da Cápsula/prevenção & controle , Epitélio
2.
Front Cell Dev Biol ; 9: 628737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898420

RESUMO

Development of the vertebrate eye requires signaling interactions between neural and non-neural tissues. Interactions between components of the vascular system and the developing neural retina have been difficult to decipher, however, due to the challenges of untangling these interactions from the roles of the vasculature in gas exchange. Here we use the embryonic zebrafish, which is not yet reliant upon hemoglobin-mediated oxygen transport, together with genetic strategies for (1) temporally-selective depletion of vascular endothelial cells, (2) elimination of blood flow through the circulation, and (3) elimination of cells of the erythroid lineage, including erythrocytes. The retinal phenotypes in these genetic systems were not identical, with endothelial cell-depleted retinas displaying laminar disorganization, cell death, reduced proliferation, and reduced cell differentiation. In contrast, the lack of blood flow resulted in a milder retinal phenotype showing reduced proliferation and reduced cell differentiation, indicating that an endothelial cell-derived factor(s) is/are required for laminar organization and cell survival. The lack of erythrocytes did not result in an obvious retinal phenotype, confirming that defects in retinal development that result from vascular manipulations are not due to poor gas exchange. These findings underscore the importance of the cardiovascular system supporting and controlling retinal development in ways other than supplying oxygen. In addition, these findings identify a key developmental window for these interactions and point to distinct functions for vascular endothelial cells vs. circulating factors.

3.
Dev Biol ; 458(2): 177-188, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31669351

RESUMO

Lens abnormalities are a major cause of reduced vision and blindness. One mechanism that can lead to reduced lens transparency, i.e. cataract, is abnormal behavior of lens epithelial cells (LECs), the precursors of the transparent lens fiber cells. Here we describe a zebrafish mutation causing the embryonic lens epithelium to generate cellular masses comprising partially differentiated lens fiber cells. We identify the mutant gene as plod3, which encodes for Lysyl hydroxylase 3 (Lh3), an enzyme essential for modification of collagens, including Collagen IV, a main component of the lens capsule. We show that plod3-deficient lenses have abnormal lens epithelium from an early developmental stage, as well as abnormal lens capsules. Subsequently, upregulation of TGFß signaling takes place, which drives the formation of lens epithelial cellular masses. We identify a similar phenotype in Collagen IVα5-deficient embryos, suggesting a key role for the defective lens capsule in the pathogenesis. We propose that plod3 and col4a5 mutant zebrafish can serve as useful models for better understanding the biology of LECs during embryonic development and in formation of lens epithelium-derived cataract.


Assuntos
Glicosiltransferases/genética , Cápsula do Cristalino/embriologia , Cápsula do Cristalino/metabolismo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Proteínas de Peixe-Zebra/genética , Actinas/genética , Actinas/metabolismo , Animais , Catarata/genética , Diferenciação Celular/fisiologia , Desenvolvimento Embrionário , Células Epiteliais/patologia , Epitélio/patologia , Glicosiltransferases/metabolismo , Cristalino/embriologia , Fenótipo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...