Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Daru ; 27(2): 541-556, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31256410

RESUMO

BACKGROUND: Zotepine (ZTP), an antipsychotic drug is well tolerated and particularly effective for treating negative symptoms of psychosis. But is limited by low oral bioavailability caused by substantial first pass metabolism and thereby less amount of drug reaches the brain due to blood brain barrier (BBB). OBJECTIVES: Since ZTP displays dose dependent side effects, purpose of the contemporary study is to develop zotepine loaded nanosuspension (ZTP-NS) for increased brain targeting in rats at lower doses. METHODS: ZTP-NS is prepared by two techniques viz., sonoprecipitation (SP) and combination technique (high pressure homogenization preceded by precipitation) by employing various stabilizers. Optimized ZTP-NS was characterized for particle size, solid state, morphology and solubility. In vitro drug release of ZTP and formulations was conducted using Franz diffusion cell. Stability study was performed at different temperature conditions. Pharmacokinetic study was performed in Wistar rats to determine the bioavailability and brain distribution of ZTP after intra-nasal (IN) and intravenous (IV) administration. Histopathology of brain was done after repeated administration of IN ZTP dispersion and NS up to 14 days. RESULTS: The optimized ZTP-NS formulated with Pluronic F-127 (0.3%w/v), Hydroxypropyl methyl cellulose E15 (0.3%w/v) and soya lecithin (0.4%w/v) showed particle size of 519.26 ± 10.44 nm & 330.2 ± 12.90 nm and zeta potential of -21.7 ± 1.39 mV and - 18.26 ± 1.64 mV with sonoprecipitation and combination technique respectively. In vitro drug release was high (81.79 ± 3.23%) for ZTP-NS prepared by combination technique. Intranasal NS resulted in high brain concentrations of 8.6 fold (sonoprecipitation) and 10.79-fold hike in AUC0-24h in contrast to intravenous ZTP solution. Histopathology results reveal no significant changes in brain microscopic images. CONCLUSION: ZTP-NS was successfully developed, characterized and found that nanosuspension is a favorable approach for intranasal delivery of zotepine. Graphical abstract Graphical abstract representing zotepine drawbacks, nanosuspension preparation, characterization and pharmacokinetic study in rats.


Assuntos
Química Encefálica , Dibenzotiepinas/administração & dosagem , Composição de Medicamentos/métodos , Administração Intranasal , Administração Intravenosa , Animais , Disponibilidade Biológica , Dibenzotiepinas/farmacocinética , Relação Dose-Resposta a Droga , Masculino , Nanopartículas , Tamanho da Partícula , Ratos , Ratos Wistar , Suspensões , Distribuição Tecidual
2.
AAPS PharmSciTech ; 18(8): 3151-3162, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28534300

RESUMO

The clinical potential of naringenin (NRG) is compromised due to its poor aqueous solubility and low oral bioavailability. The study is aimed at addressing these issues by means of naringenin nanosuspensions (NRG-NS) formulated using polyvinylpyrrolidone (PVP K-90) as stabiliser via antisolvent sonoprecipitation method. Optimisation of sonication time, drug concentration and stabilisers was done based on particle size. Characterisation of pure NRG and NRG-NS was carried out by scanning electron microscopy, differential scanning calorimetry (DSC), x-ray powder diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR). In vitro dissolution, intestinal absorption by non-everted rat intestinal sac model and in situ single pass intestinal perfusion techniques were performed for further investigation. Nanosuspensions prepared using PVP K-90 lead to minimum particle size (117 ± 5 nm) with zeta potential of -14.6 ± 5.6 mV. The particle size was affected by increasing sonication time, concentration of stabiliser and drug. Nanosizing process converted the crystalline drug into amorphous form as predicted from DSC and XRD patterns. FTIR demonstrated the formation of hydrogen bonds between drug and polymer. NRG-NS displayed a higher dissolution amount (91 ± 4.4% during 60 min) compared to NRG powder (42 ± 0.41%). The apparent and effective permeability of NRG-NS was increased as compared to the pure NRG. The in vivo pharmacokinetics demonstrated that the C max and AUC0-24 h values of NRG-NS were approximately 2- and 1.8-fold superior than the pure drug. Hence, overall results confirmed nanosuspensions as promising approach for NRG delivery with high absorption in gastrointestinal tract, improved dissolution and oral bioavailability.


Assuntos
Flavanonas/química , Flavanonas/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Administração Oral , Animais , Antiulcerosos/química , Antiulcerosos/metabolismo , Disponibilidade Biológica , Varredura Diferencial de Calorimetria/métodos , Composição de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Flavanonas/administração & dosagem , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Masculino , Microscopia Eletrônica de Varredura/métodos , Nanopartículas/administração & dosagem , Tamanho da Partícula , Ratos , Ratos Wistar , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Suspensões , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA