Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Divers ; 26(3): 1645-1661, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34480682

RESUMO

COVID-19 is a viral pandemic caused by SARS-CoV-2. Due to its highly contagious nature, millions of people are getting affected worldwide knocking down the delicate global socio-economic equilibrium. According to the World Health Organization, COVID-19 has affected over 186 million people with a mortality of around 4 million as of July 09, 2021. Currently, there are few therapeutic options available for COVID-19 control. The rapid mutations in SARS-CoV-2 genome and development of new virulent strains with increased infection and mortality among COVID-19 patients, there is a great need to discover more potential drugs for SARS-CoV-2 on a priority basis. One of the key viral enzymes responsible for the replication and maturation of SARS-CoV-2 is Mpro protein. In the current study, structure-based virtual screening was used to identify four potential ligands against SARS-CoV-2 Mpro from a set of 8,722 ASINEX library compounds. These four compounds were evaluated using ADME filter to check their ADME profile and druggability, and all the four compounds were found to be within the current pharmacological acceptable range. They were individually docked to SARS-CoV-2 Mpro protein to assess their molecular interactions. Further, molecular dynamics (MD) simulations was carried out on protein-ligand complex using Desmond at 100 ns to explore their binding conformational stability. Based on RMSD, RMSF and hydrogen bond interactions, it was found that the stability of protein-ligand complex was maintained throughout the entire 100 ns simulations for all the four compounds. Some of the key ligand amino acid residues participated in stabilizing the protein-ligand interactions includes GLN 189, SER 10, GLU 166, ASN 142 with PHE 66 and TRP 132 of SARS-CoV-2 Mpro. Further optimization of these compounds could lead to promising drug candidates for SARS-CoV-2 Mpro target.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Proteínas não Estruturais Virais
2.
Comput Biol Chem ; 80: 472-479, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31174159

RESUMO

To understand the structural and functional importance of PIK3CA somatic mutations, whole exome sequencing, molecular dynamics simulation techniques in combination with in silico prediction algorithms such as SIFT, PolyPhen, Provean and CADD were employed. Twenty out of eighty missense somatic mutations in PIK3CA gene were found to be pathogenic by all the four algorithms. Most recurrent mutations found were known hotspot PIK3CA mutations with known clinical significance like p.E545 K, p.E545A, p.E545 G and p.C420R. A missense mutation p.G118D was found to be recurrently mutated in 5 cases. Interestingly, this mutation was observed in one of the patients who underwent whole exome sequencing and was completely absent from the controls. To see the effect of this mutation on the structure of PIK3CA protein, molecular dynamics simulation was performed. By molecular dynamics approach, we have shown that p.G118D mutation deviated from the native structure which was supported by the decrease in the number of hydrogen bonds, difference in hydrogen bond distance and angle, difference in root mean square deviation between the native and the mutant structures.


Assuntos
Neoplasias da Mama/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Algoritmos , Biologia Computacional/métodos , Feminino , Humanos , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Sequenciamento do Exoma
3.
J Mol Model ; 22(10): 247, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27683258

RESUMO

Sophora interrupta Bedd, (Fabaceae) is used in Indian folk medicine to treat cancer. Angiogenesis is one of the crucial characteristics of cancer metastasis and is regulated by vascular endothelial growth factor (VEGF). In this study, we examined the antiangiogenic properties of the root ethyl acetate extract of Sophora interrupta by various methods. In vitro antioxidant activity (100-600 µg/ml) of S. interrupta ethyl acetate (SEA) extract was evaluated by DPPH and ABTS, anti-inflammatory activity (50, 100 and 150 µg/ml) by estimating nitric oxide (NO) levels, anti-angiogenic activity (200 and 500 µg/ml) was validated by chorio allantoic membrane (CAM) assay and in silico molecular dynamic (MD) simulations analyses (25 ns) were performed to identify the anti-angiogenic compounds extracted from root extract. The antioxidative activity of SEA extract at IC50 (200 ± 0.6 µg/mL) is equal to that of ascorbic acid at IC50 (50 ± 0.6 µg/mL), and the anti-inflammatory activity of SEA extract at IC50 (150 ± 0.2 µg/mL) was inhibited significantly by nitric oxide (NO) production. The SEA extract significantly reduced the sprouting of new blood vessels at ID50 500 ± 0.13 µg/mL in the CAM assay. Gas chromatography-mass spectrometry analysis of the SEA extract detected 34 secondary metabolites, of which 6a,12a-dihydro-6H-(1,3)dioxolo(5,6)benzofuro(3,2-c)chromen-3-ol (maackiain) and funiculosin formed strong hydrogen bond interactions with Lys 920, Thr 916 and Cys 919 (2H), as well as Glu 917 of VEGFR2, and these interactions were similar to those of the anti-angiogenic compound axitinib. Significant findings in all the assays performed indicate that SEA extract has potential anti-angiogenic compounds that may interfere with VEGF-induced cancer malignancy.


Assuntos
Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Sophora/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Células RAW 264.7 , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Drug Des Devel Ther ; 9: 4397-412, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26273199

RESUMO

BACKGROUND: Obesity is a progressive metabolic disorder in the current world population, and is characterized by the excess deposition of fat in the adipose tissue. Pancreatic lipase is one of the key enzymes in the hydrolysis of triglycerides into monoglycerides and free fatty acids, and is thus considered a promising target for the treatment of obesity. The present drugs used for treating obesity do not give satisfactory results, and on prolonged usage result in severe side effects. In view of the drastic increase in the obese population day-to-day, there is a greater need to discover new drugs with lesser side effects. MATERIALS AND METHODS: High-throughput virtual screening combined with e-pharmacophore screening and ADME (absorption, distribution, metabolism, and excretion) and PAINS (pan-assay interference compounds) filters were applied to screen out the ligand molecules from the ZINC natural molecule database. The screened molecules were subjected to Glide XP docking to study the molecular interactions broadly. Further, molecular dynamic simulations were used to validate the stability of the enzyme-ligand complexes. Finally, the molecules with better results were optimized for in vitro testing. RESULTS: The screening protocols identified eight hits from the natural molecule database, which were further filtered through pharmacological filters. The final four hits were subjected to extra precision docking, and the complexes were finally studied with molecular dynamic simulations. The results pointed to the zinc 85893731 molecule as the most stable in the binding pocket, producing consistent H-bond interaction with Ser152 (G=-7.18). The optimized lead molecule exhibited good docking score, better fit, and improved ADME profile. CONCLUSION: The present study specifies zinc 85893731 as a lead molecule with higher binding score and energetically stable complex with pancreatic lipase. This lead molecule, along with its various analogs, can be further tested as a novel inhibitor against pancreatic lipase using in vitro protocols.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Lipase/antagonistas & inibidores , Fármacos Antiobesidade/efeitos adversos , Fármacos Antiobesidade/farmacocinética , Fármacos Antiobesidade/farmacologia , Bases de Dados de Compostos Químicos , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacocinética , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Obesidade/tratamento farmacológico , Obesidade/enzimologia
5.
Bioinformation ; 11(12): 535-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26770027

RESUMO

Increase in obesity rates and obesity associated health issues became one of the greatest health concerns in the present world population. With alarming increase in obese percentage there is a need to design new drugs related to the obesity targets. Among the various targets linked to obesity, pancreatic lipase was one of the promising targets for obesity treatment. Using the in silico methods like structure based virtual screening, QikProp, docking studies and binding energy calculations three molecules namely zinc85531017, zinc95919096 and zinc33963788 from the natural database were reported as the potential inhibitors for the pancreatic lipase. Among them zinc95919096 presented all the interactions matching to both standard and crystal ligand and hence it can be further proceeded to drug discovery process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...