Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 94(6): 1307-16, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23923494

RESUMO

Recent work in model systems has demonstrated significant effects of rapid evolutionary change on ecological processes (eco-evolutionary dynamics). Fewer studies have addressed whether eco-evolutionary dynamics structure natural ecosystems. We investigated variation in the frequency of serotiny in lodgepole pine (Pinus contorta), a widespread species in which postfire seedling density and ecosystem structure are largely determined by serotiny. Serotiny, the retention of mature seeds in cones in a canopy seed bank, is thought to be an adaptation for stand-replacing fire, but less attention has been paid to the potential selective effects of seed predation on serotiny. We hypothesized that spatial variation in percentage serotiny in lodgepole pine forests results from an eco-evolutionary dynamic where the local level of serotiny depends on the relative strengths of conflicting directional selection from fire (favoring serotiny) and seed predation (favoring cones that open at maturity). We measured percentage serotiny, the abundance of American red squirrels (Tamiasciurus hudsonicus; the primary pre-dispersal seed predator of lodgepole pine), and several measures of forest structure in Yellowstone National Park, USA. Fire frequency strongly predicted the frequency of serotiny, a pattern that is well-supported in the literature. At sites with high fire frequency (return intervals of -135-185 years) where fire favors increased serotiny, squirrel abundance was negatively associated with serotiny, suggesting that selection from predation can overwhelm selection from fire when squirrels are abundant. At sites with low fire frequency (return intervals of -280-310 years), serotiny was nearly universally uncommon (< 10%). Finally, forest structure strongly predicted squirrel density independently of serotiny, and serotiny provided no additional explanatory power, suggesting that the correlation is caused by selection against serotiny exerted by squirrels, rather than squirrels responding to variation in percentage serotiny.


Assuntos
Comportamento Alimentar , Incêndios , Sciuridae/fisiologia , Sementes/fisiologia , Animais
2.
Evolution ; 67(1): 157-69, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23289569

RESUMO

Phenotypic selection that is sustained over time underlies both anagenesis and cladogenesis, but the conditions that lead to such selection and what causes variation in selection are not well known. We measured the selection exerted by three species of predispersal seed predators of lodgepole pine (Pinus contorta latifolia) in the South Hills, Idaho, and found that net selection on different cone and seed traits exerted by red crossbills (Loxia curvirostra) and cone borer moths (Eucosma recissoriana) over 10 years of seed crops was similar to that measured in another mountain range. We also found that the strength of selection increased as seed predation increased, which provides a mechanism for the correlation between the escalation of seed defenses and the density of seed predators. Red crossbills consume the most seeds and selection they exert accounts for much of the selection experienced by lodgepole pine, providing additional support for a coevolutionary arms race between crossbills and lodgepole pine in the South Hills. The third seed predator, hairy woodpeckers (Picoides villosus), consumed less than one-sixth as many seeds as crossbills. Across the northern Rocky Mountains, woodpecker abundance and therefore selective impact appears limited by the elevated seed defenses of lodgepole pine.


Assuntos
Cadeia Alimentar , Fenótipo , Pinus/genética , Sementes/genética , Seleção Genética , Animais , Biota , Evolução Molecular , Mariposas , Passeriformes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...