Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
3 Biotech ; 6(1): 28, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28330094

RESUMO

Marine bacteria are known to produce many bioactive molecules and extracellular enzymes of commercial importance. We have investigated the bacterial diversity of the coastal area of Karwar, Karnataka State, India. Among these bacterial isolates, five bacterial strains were selected and identified by their morphological, biochemical characteristics and phylogenetic analysis based on 16S rRNA gene sequences. The identified bacterial isolates, Bacillus toyonensis PNTB1, Lysinibacillus sphaericus PTB, Vibrio vulnificus PMD, Shewanella MPTDBS, and Pseudomonas chlororaphis PNTB were characterized for their tolerance to salt and antibiotics. Vibrio vulnificus PMD showed maximum tolerance at higher concentration of salt than other bacteria. These bacterial strains were screened for the production of extracellular enzymes such as lipase, cellulase, pectinase, tannase, chitinase, and L-glutaminase. Vibrio vulnificus showed maximum production of L-glutaminase enzyme. Bacillus toyonensis PNTB1 shows lipase, CM-cellulase and chitinase activities. These isolated bacterial cultures were also utilized most of the aromatic compounds at 7 mM. These findings indicate the organisms present in this zone may have more potential applications in bioremediation, agricultural, industrial, and therapeutics.

2.
Braz J Microbiol ; 46(3): 667-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413046

RESUMO

Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 °C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM) than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water.


Assuntos
Biodegradação Ambiental , Células Imobilizadas/metabolismo , Inseticidas/metabolismo , Micrococcus/metabolismo , Piretrinas/metabolismo , Alginatos , Ácido Glucurônico , Ácidos Hexurônicos , Micrococcus/classificação , Poliuretanos
3.
Braz. j. microbiol ; 46(3): 667-672, July-Sept. 2015. ilus
Artigo em Inglês | LILACS | ID: lil-755816

RESUMO

Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 °C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM) than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water.

.


Assuntos
Biodegradação Ambiental , Células Imobilizadas/metabolismo , Inseticidas/metabolismo , Micrococcus/metabolismo , Piretrinas/metabolismo , Alginatos , Ácido Glucurônico , Ácidos Hexurônicos , Micrococcus/classificação , Poliuretanos
4.
J Basic Microbiol ; 55(9): 1094-103, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25832924

RESUMO

Profenofos is an organophosphate pesticide used extensively in agriculture to control pests. A bacterium capable of degrading profenofos was isolated from pesticide-contaminated soil samples and identified as Pseudoxanthomonas suwonensis strain HNM based on its morphological and biochemical characteristics and phylogenetic analysis of 16S rRNA gene sequences. 4-Bromo-2-chlorophenol was identified as a metabolite of profenofos degradation by HPLC and GC-MS analysis. The organism degraded profenofos by hydrolysis to yield 4-bromo-2-chlorophenol which was further utilized as carbon source for growth. The organism utilized various organophosphate pesticides such as temephos, quinalphos, and chloropyrifos as carbon sources. The optimum conditions for degradation of profenofos by P. suwonensis strain HMN were found to be at pH 7 and 30 °C. We have investigated the rate of degradation of profenofos by the free and immobilized cells of P. suwonensis strain HNM in various matrices such as sodium alginate (SA), sodium alginate-polyvinyl alcohol (SA-PVA), and SA-bentonite clay. The rate of degradation of 3 and 6 mM profenofos by the freely suspended cells were compared with that by immobilized cells in batches and semi-continuous with shaken cultures. The SA-bentonite clay-immobilized cells showed higher rate of degradation of 3 and 6 mM profenofos then freely suspended cells and cells immobilized in SA and SA-PVA. The SA-bentonite clay-immobilized cells of P. suwonensis strain HNM could be reused for more than 32 cycles without losing their degradation capacity. Thus, the immobilized cells are more efficient than freely suspended cells for the degradation of organophosphate pesticide contaminated water.


Assuntos
Organotiofosfatos/metabolismo , Praguicidas/metabolismo , Xanthomonadaceae/metabolismo , Biodegradação Ambiental , Células Imobilizadas/metabolismo , Hidrólise , Organotiofosfatos/química , Praguicidas/química , Xanthomonadaceae/isolamento & purificação
5.
Chemosphere ; 90(6): 1920-4, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23153775

RESUMO

Nitrotoluenes are the toxic pollutants of the environment because of their large scale use in the production of explosives. Biodegradation of such chemicals by microorganisms may provide an effective method for their detoxification. We have studied the degradation of 2-nitrotoluene by cells of Micrococcus sp. strain SMN-1 immobilized in various matrices such as polyurethane foam (PUF), sodium alginate (SA), sodium alginate-polyvinyl alcohol (SA-PVA), agar and polyacrylamide. The rate of degradation of 15 and 30 mM 2-nitrotoluene by freely suspended cells and immobilized cells in batches and fed-batch with shaken cultures were compared. The PUF-immobilized cells achieved higher degradation of 15 and 30 mM 2-nitrotoluene than freely suspended cells and the cells immobilized in SA-PVA, polyacrylamide, SA and agar. The PUF-immobilized cells could be reused more than 24 cycles without loosing their degradation capacity and showed more tolerance to pH and temperature changes than freely suspended cells. These results revealed the enhanced rate of degradation of 2-nitrotoluene by PUF-immobilized cells of Micrococcus sp. strain SMN-1.


Assuntos
Poluentes Ambientais/metabolismo , Micrococcus/metabolismo , Tolueno/análogos & derivados , Biodegradação Ambiental , Poluentes Ambientais/análise , Tolueno/análise , Tolueno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...