Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Structure ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39299234

RESUMO

Outer mitochondrial membrane fusion, a vital cellular process, is mediated by mitofusins. However, the underlying molecular mechanism remains elusive. We have performed extensive multiscale molecular dynamics simulations to predict a model of the transmembrane (TM) domain of the yeast mitofusin Fzo1. Coarse-grained simulations of the two TM domain helices, TM1 and TM2, reveal a stable interface, which is controlled by the charge status of residue Lys716. Atomistic replica-exchange simulations further tune our model, which is confirmed by a remarkable agreement with an independent AlphaFold2 (AF2) prediction of Fzo1 in complex with its fusion partner Ugo1. Furthermore, the presence of the TM domain destabilizes the membrane, even more if Lys716 is charged, which can be an asset for initiating fusion. The functional role of Lys716 was confirmed with yeast experiments, which show that mutating Lys716 to a hydrophobic residue prevents mitochondrial fusion.

2.
J Chem Inf Model ; 64(1): 26-41, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38124369

RESUMO

AlphaFold2 (AF2) and RoseTTaFold (RF) have revolutionized structural biology, serving as highly reliable and effective methods for predicting protein structures. This article explores their impact and limitations, focusing on their integration into experimental pipelines and their application in diverse protein classes, including membrane proteins, intrinsically disordered proteins (IDPs), and oligomers. In experimental pipelines, AF2 models help X-ray crystallography in resolving the phase problem, while complementarity with mass spectrometry and NMR data enhances structure determination and protein flexibility prediction. Predicting the structure of membrane proteins remains challenging for both AF2 and RF due to difficulties in capturing conformational ensembles and interactions with the membrane. Improvements in incorporating membrane-specific features and predicting the structural effect of mutations are crucial. For intrinsically disordered proteins, AF2's confidence score (pLDDT) serves as a competitive disorder predictor, but integrative approaches including molecular dynamics (MD) simulations or hydrophobic cluster analyses are advocated for accurate dynamics representation. AF2 and RF show promising results for oligomeric models, outperforming traditional docking methods, with AlphaFold-Multimer showing improved performance. However, some caveats remain in particular for membrane proteins. Real-life examples demonstrate AF2's predictive capabilities in unknown protein structures, but models should be evaluated for their agreement with experimental data. Furthermore, AF2 models can be used complementarily with MD simulations. In this Perspective, we propose a "wish list" for improving deep-learning-based protein folding prediction models, including using experimental data as constraints and modifying models with binding partners or post-translational modifications. Additionally, a meta-tool for ranking and suggesting composite models is suggested, driving future advancements in this rapidly evolving field.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Furilfuramida , Dobramento de Proteína , Simulação de Dinâmica Molecular , Proteínas de Membrana , Conformação Proteica
3.
J Chem Inf Model ; 63(12): 3637-3646, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37305901

RESUMO

The recent breakthrough made in the field of three-dimensional (3D) structure prediction by artificial intelligence softwares, such as initially AlphaFold2 (AF2) and RosettaFold (RF) and more recently large Language Models (LLM), has revolutionized the field of structural biology in particular and also biology as a whole. These models have clearly generated great enthusiasm within the scientific community, and different applications of these 3D predictions are regularly described in scientific articles, demonstrating the impact of these high-quality models. Despite the acknowledged high accuracy of these models in general, it seems important to make users of these models aware of the wealth of information they offer and to encourage them to make the best use of them. Here, we focus on the impact of these models in a specific application by structural biologists using X-ray crystallography. We propose guidelines to prepare models to be used for molecular replacement trials to solve the phase problem. We also encourage colleagues to share as much detail as possible about how they use these models in their research, where the models did not yield correct molecular replacement solutions, and how these predictions fit with their experimental 3D structure. We feel this is important to improve the pipelines using these models and also to get feedback on their overall quality.


Assuntos
Inteligência Artificial , Software , Cristalografia por Raios X , Biologia
4.
Biochem Mol Biol Educ ; 51(4): 410-417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37148479

RESUMO

The way flipped classrooms are perceived and even practiced by teachers is sometimes approximate. For instance, while the Covid-19 pandemic has pushed many universities to adopt distance learning, flipped classrooms have often been mentioned as a solution in that context. This inducement maintains a confusion between flipped classrooms and distance learning that might be detrimental for students and teachers. Moreover, embarking on a new pedagogical practice such as flipped classroom could be intimidating and time-consuming for the newcomer teacher. For these reasons, this article aims to share some tips for implementing a flipped classroom, with examples from biology and biochemistry. Based on our experiences but also on the current scientific literature, we structured these advise around three phases: preparation, implementation, and follow-up. In the preparation phase, we advise planning early to invert time in class and outside the classroom, but also to say it explicitly, as well as to identify (or optionally create) resources for students to learn in autonomy. In the implementation phase, we suggest to (i) be explicit in the acquisition of knowledge and foster students' autonomy; (ii) explore active learning in class; (iii) develop cooperation and sharing skills; and (iv) differentiate teaching practices to adapt to student needs. Lastly, in the follow-up phase, we propose to (i) evaluate both student learning and the pedagogical setting; (ii) take care of the logistics and the teacher's posture; (iii) document the flipped classroom, and (iv) share the teaching experience.


Assuntos
Educação a Distância , Pandemias , Humanos , Aprendizagem Baseada em Problemas , Currículo , Estudantes
5.
Nat Commun ; 14(1): 1269, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882406

RESUMO

PIEZO proteins are unusually large, mechanically-activated trimeric ion channels. The central pore features structural similarities with the pore of other trimeric ion channels, including purinergic P2X receptors, for which optical control of channel gating has been previously achieved with photoswitchable azobenzenes. Extension of these chemical optogenetics methods to mechanically-activated ion channels would provide tools for specific manipulation of pore activity alternative to non-specific mechanical stimulations. Here we report a light-gated mouse PIEZO1 channel, in which an azobenzene-based photoswitch covalently tethered to an engineered cysteine, Y2464C, localized at the extracellular apex of the transmembrane helix 38, rapidly triggers channel gating upon 365-nm-light irradiation. We provide evidence that this light-gated channel recapitulates mechanically-activated PIEZO1 functional properties, and show that light-induced molecular motions are similar to those evoked mechanically. These results push the limits of azobenzene-based methods to unusually large ion channels and provide a simple stimulation means to specifically interrogate PIEZO1 function.


Assuntos
Compostos Azo , Cisteína , Animais , Camundongos , Movimento (Física) , Optogenética , Canais Iônicos
6.
Mol Oncol ; 17(12): 2546-2564, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36727672

RESUMO

Exportin 1 (XPO1) is the main nuclear export receptor that controls the subcellular trafficking and the functions of major regulatory proteins. XPO1 is overexpressed in various cancers and small inhibitors of nuclear export (SINEs) have been developed to inhibit XPO1. In primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin's lymphoma (cHL), the XPO1 gene may be mutated on one nucleotide and encodes the mutant XPO1E571K . To understand the impact of mutation on protein function, we studied the response of PMBL and cHL cells to selinexor, a SINE, and ibrutinib, an inhibitor of Bruton tyrosine kinase. XPO1 mutation renders lymphoma cells more sensitive to selinexor due to a faster degradation of mutant XPO1 compared to the wild-type. We further showed that a mistrafficking of p65 (RELA) and p52 (NFκB2) transcription factors between the nuclear and cytoplasmic compartments accounts for the response toward ibrutinib. XPO1 mutation may be envisaged as a biomarker of the response of PMBL and cHL cells and other B-cell hemopathies to SINEs and drugs that target even indirectly the NFκB signaling pathway.


Assuntos
Doença de Hodgkin , Humanos , Linhagem Celular Tumoral , Proteína Exportina 1 , Doença de Hodgkin/tratamento farmacológico , Doença de Hodgkin/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Citoplasma/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo
7.
Front Neurosci ; 15: 768466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912189

RESUMO

Fipronil (FPN) is a worldwide-used neurotoxic insecticide, targeting, and blocking GABAA receptors (GABAARs). Beyond its efficiency on insect GABAARs, FPN causes neurotoxic effects in humans and mammals. Here, we investigated the mode of action of FPN on mammalian α6-containing GABAARs to understand its inhibitory effects on GABA-induced currents, as a function of the synaptic or extrasynaptic localization of GABAARs. We characterized the effects of FPN by electrophysiology using Xenopus oocytes which were microtransplanted with cerebellum membranes or injected with α6ß3, α6ß3γ2S (synaptic), and α6ß3δ (extrasynaptic) cDNAs. At micromolar concentrations, FPN dose-dependently inhibited cerebellar GABA currents. FPN acts as a non-competitive antagonist on ternary receptors. Surprisingly, the inhibition of GABA-induced currents was partial for extra-synaptic (α6ß3δ) and binary (α6ß3) receptors, while synaptic α6ß3γ2S receptors were fully blocked, indicating that the complementary γ or δ subunit participates in FPN-GABAAR interaction. FPN unexpectedly behaved as a positive modulator on ß3 homopentamers. These data show that FPN action is driven by the subunit composition of GABAARs-highlighting the role of the complementary subunit-and thus their localization within a physiological synapse. We built a docking model of FPN on GABAARs, which reveals two putative binding sites. This is consistent with a double binding mode of FPN on GABAARs, possibly one being of high affinity and the other of low affinity. Physiologically, the γ/δ subunit incorporation drives its inhibitory level and has important significance for its toxicity on the mammalian nervous system, especially in acute exposure.

8.
Elife ; 102021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34590583

RESUMO

Pentameric ligand-gated ion channels (pLGICs) mediate chemical signaling through a succession of allosteric transitions that are yet not completely understood as intermediate states remain poorly characterized by structural approaches. In a previous study on the prototypic bacterial proton-gated channel GLIC, we generated several fluorescent sensors of the protein conformation that report a fast transition to a pre-active state, which precedes the slower process of activation with pore opening. Here, we explored the phenotype of a series of allosteric mutations, using simultaneous steady-state fluorescence and electrophysiological measurements over a broad pH range. Our data, fitted to a three-state Monod-Wyman-Changeux model, show that mutations at the subunit interface in the extracellular domain (ECD) principally alter pre-activation, while mutations in the lower ECD and in the transmembrane domain principally alter activation. We also show that propofol alters both transitions. Data are discussed in the framework of transition pathways generated by normal mode analysis (iModFit). It further supports that pre-activation involves major quaternary compaction of the ECD, and suggests that activation involves principally a reorganization of a 'central gating region' involving a contraction of the ECD ß-sandwich and the tilt of the channel lining M2 helix.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Análise Mutacional de DNA , Ativação do Canal Iônico , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Mutação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cianobactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/genética , Modelos Biológicos , Simulação de Acoplamento Molecular , Conformação Proteica , Relação Estrutura-Atividade , Fatores de Tempo
9.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065933

RESUMO

Neonicotinoid insecticides are nicotine-derived molecules which exert acute neurotoxic effects over the insect central nervous system by activating nicotinic acetylcholine receptors (nAChRs). However, these receptors are also present in the mammalian central and peripheral nervous system, where the effects of neonicotinoids are faintly known. In mammals, cholinergic synapses are crucial for the control of vascular tone, blood pressure and skeletal muscle contraction. We therefore hypothesized that neonicotinoids could affect cholinergic networks in mammals and sought to highlight functional consequences of acute intoxication in rats with sub-lethal concentrations of the highly used acetamiprid (ACE) and clothianidin (CLO). In this view, we characterized their electrophysiological effects on rat α3ß4 nAChRs, knowing that it is predominantly expressed in ganglia of the vegetative nervous system and the adrenal medulla, which initiates catecholamine secretion. Both molecules exhibited a weak agonist effect on α3ß4 receptors. Accordingly, their influence on epinephrine secretion from rat adrenal glands was also weak at 100 µM, but it was stronger at 500 µM. Challenging ACE or CLO together with nicotine (NIC) ended up with paradoxical effects on secretion. In addition, we measured the rat arterial blood pressure (ABP) in vivo by arterial catheterization. As expected, NIC induced a significant increase in ABP. ACE and CLO did not affect the ABP in the same conditions. However, simultaneous exposure of rats to both NIC and ACE/CLO promoted an increase of ABP and induced a biphasic response. Modeling the interaction of ACE or CLO on α3ß4 nAChR is consistent with a binding site located in the agonist pocket of the receptor. We present a transversal experimental approach of mammal intoxication with neonicotinoids at different scales, including in vitro, ex vivo, in vivo and in silico. It paves the way of the acute and chronic toxicity for this class of insecticides on mammalian organisms.


Assuntos
Epinefrina/metabolismo , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nicotina/toxicidade , Receptores Nicotínicos/metabolismo , Medula Suprarrenal/efeitos dos fármacos , Medula Suprarrenal/metabolismo , Animais , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Agonismo Parcial de Drogas , Gânglios/efeitos dos fármacos , Gânglios/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Guanidinas/toxicidade , Masculino , Ratos , Tiazóis/toxicidade , Testes de Toxicidade Subaguda
10.
Elife ; 92020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33112237

RESUMO

Glutamate delta (GluD) receptors belong to the ionotropic glutamate receptor family, yet they don't bind glutamate and are considered orphan. Progress in defining the ion channel function of GluDs in neurons has been hindered by a lack of pharmacological tools. Here, we used a chemo-genetic approach to engineer specific and photo-reversible pharmacology in GluD2 receptor. We incorporated a cysteine mutation in the cavity located above the putative ion channel pore, for site-specific conjugation with a photoswitchable pore blocker. In the constitutively open GluD2 Lurcher mutant, current could be rapidly and reversibly decreased with light. We then transposed the cysteine mutation to the native receptor, to demonstrate with high pharmacological specificity that metabotropic glutamate receptor signaling triggers opening of GluD2. Our results assess the functional relevance of GluD2 ion channel and introduce an optogenetic tool that will provide a novel and powerful means for probing GluD2 ionotropic contribution to neuronal physiology.


Neurotransmitters are chemicals released by the body that trigger activity in neurons. Receptors on the surface of neurons detect these neurotransmitters, providing a link between the inside and the outside of the cell. Glutamate is one of the major neurotransmitters and is involved in virtually all brain functions. Glutamate binds to two different types of receptors in neurons. Ionotropic receptors have pores known as ion channels, which open when glutamate binds. This is a fast-acting response that allows sodium ions to flow into the neuron, triggering an electrical signal. Metabotropic receptors, on the other hand, trigger a series of events inside the cell that lead to a response. Metabotropic receptors take more time than ionotropic receptors to elicit a response in the cell, but their effects last much longer. One type of receptor, known as the GluD family, is very similar to ionotropic glutamate receptors but does not directly respond to glutamate. Instead, the ion channel of GluD receptors opens after being activated by glutamate metabotropic receptors. GluD receptors are produced throughout the brain and play roles in synapse formation and activity, but the way they work remains unclear. An obstacle to understanding how GluD receptors work is the lack of molecules that can specifically block these receptors' ion channel activity. Lemoine et al. have developed a tool that enables control of the ion channel in GluD receptors using light. Human cells grown in the lab were genetically modified to produce a version of GluD2 (a member of the GluD family) with a light-sensitive molecule attached. In darkness or under green light, the light-sensitive molecule blocks the channel and prevents ions from passing through. Under violet light, the molecule twists, and ions can flow through the channel. With this control over the GluD2 ion channel activity, Lemoine et al. were able to validate previous research showing that the activation of metabotropic glutamate receptors can trigger GluD2 to open. The next step will be to test this approach in neurons. This will help researchers to understand what role GluD ion channels play in neuron to neuron communication.


Assuntos
Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Sítios de Ligação , Engenharia Genética , Glutamato Desidrogenase/química , Glutamatos/química , Glutamatos/metabolismo , Células HEK293 , Humanos , Luz , Mutação
11.
Cancers (Basel) ; 12(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007990

RESUMO

The XPO1 gene encodes exportin 1 (XPO1) that controls the nuclear export of cargo proteins and RNAs. Almost 25% of primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) cases harboured a recurrent XPO1 point mutation (NM_003400, chr2:g61718472C>T) resulting in the E571K substitution within the hydrophobic groove of the protein, the site of cargo binding. We investigated the impact of the XPO1E571K mutation using PMBL/cHL cells having various XPO1 statuses and CRISPR-Cas9-edited cells in which the E571K mutation was either introduced or knocked-out. We first confirmed that the mutation was present in both XPO1 mRNA and protein. We observed that the mutation did not modify the export capacity but rather the subcellular localisation of XPO1 itself. In particular, mutant XPO1 bound to importin ß1 modified the nuclear export/import dynamics of relevant cargoes.

12.
Data Brief ; 26: 104460, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31667232

RESUMO

In this work we present a novel set of possible auto-oligomerisation states of yeast protein Fzo1 in the context of membrane docking. The dataset reports atomistic models and trajectories derived from a molecular dynamics study of the yeast mitofusin Fzo1, residues 101-855. The initial modelling was followed by coarse-grained molecular dynamics simulation to evaluate the stability and the dynamics of each structural model in a solvated membrane environment. Simulations were run for 1 µs and collected with GROMACS v5.0.4 using the martini v2.1 force field. For each structural model, the dataset comprises the production phase under semi-isotropic condition at 1 bar, 310 K and 150 mn NaCl. The integration step is 20 fs and coordinates have been saved every 1 ns. Each trajectory is associated with a ready-available visualization state for the VMD software. These structural detailed informations are a ready-available platform to plan integrative studies on the mitofusin Fzo1 and will aid the community to further elucidate the mitochondrial tethering process during membrane fusion. This dataset is based on the publication "Physics-based oligomeric models of the yeast mitofusin Fzo1 at the molecular scale in the context of membrane docking." (Brandner and De Vecchis et al., 2019)".

13.
J Membr Biol ; 252(4-5): 293-306, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31485701

RESUMO

Mitochondria are dynamic organelles characterized by an ultrastructural organization which is essential in maintaining their quality control and ensuring functional efficiency. The complex mitochondrial network is the result of the two ongoing forces of fusion and fission of inner and outer membranes. Understanding the functional details of mitochondrial dynamics is physiologically relevant as perturbations of this delicate equilibrium have critical consequences and involved in several neurological disorders. Molecular actors involved in this process are large GTPases from the dynamin-related protein family. They catalyze nucleotide-dependent membrane remodeling and are widely conserved from bacteria to higher eukaryotes. Although structural characterization of different family members has contributed in understanding molecular mechanisms of mitochondrial dynamics in more detail, the complete structure of some members as well as the precise assembly of functional oligomers remains largely unknown. As increasing structural data become available, the domain modularity across the dynamin superfamily emerged as a foundation for transfering the knowledge towards less characterized members. In this review, we will first provide an overview of the main actors involved in mitochondrial dynamics. We then discuss recent example of computational methodologies for the study of mitofusin oligomers, and present how the usage of integrative modeling in conjunction with biochemical data can be an asset in progressing the still challenging field of membrane dynamics.


Assuntos
Fusão de Membrana , Mitocôndrias , Dinâmica Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial , Membranas Mitocondriais , Animais , Humanos , Mitocôndrias/química , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo
14.
Mitochondrion ; 49: 234-244, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31306768

RESUMO

Tethering and homotypic fusion of mitochondrial outer membranes is mediated by large GTPases of the dynamin-related proteins family called the mitofusins. The yeast mitofusin Fzo1 forms high molecular weight complexes and its assembly during membrane fusion likely involves the formation of high order complexes. Consistent with this possibility, mitofusins form oligomers in both cis (on the same lipid bilayer) and trans to mediate membrane attachment and fusion. Here, we utilize our recent Fzo1 model to investigate and discuss the formation of cis and trans mitofusin oligomers. We have built three distinct cis-assembly Fzo1 models that gave rise to three distinct trans-oligomeric models of mitofusin constructs. Each model involves two main components of mitofusin oligomerization: the GTPase and the trunk domains. The oligomeric models proposed in this study were further assessed for stability and dynamics in a membrane environment using a coarse-grained molecular dynamics (MD) simulation approach. A narrow opening 'head-to-head' cis-oligomerization (via the GTPase domain) followed by the antiparallel 'back-to-back' trans-associations (via the trunk domain) appears to be in agreement with all of the available experimental data. More broadly, this study opens new possibilities to start exploring cis and trans conformations for Fzo1 and mitofusins in general.


Assuntos
GTP Fosfo-Hidrolases/química , Proteínas de Membrana/química , Membranas Mitocondriais/química , Proteínas Mitocondriais/química , Simulação de Acoplamento Molecular , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Domínios Proteicos , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Pharmacol Res ; 145: 104250, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31059790

RESUMO

Etifoxine (EFX) is a non-benzodiazepine psychoactive drug which exhibits anxiolytic effects through a dual mechanism, by directly binding to GABAA receptors (GABAARs) and to the mitochondrial 18-kDa translocator protein, resulting in the potentiation of the GABAergic function. The ß subunit subtype plays a key role in the EFX-GABAAR interaction, however this does not explain the anxiolytic effects of this drug. Here, we combined behavioral and electrophysiological experiments to challenge the role of the GABAAR α subunit in the EFX mode of action. After single administrations of anxiolytic doses (25-50 mg/kg, intraperitoneal), EFX did not induce any neurological nor locomotor impairments, unlike the benzodiazepine bromazepam (0.5-1 mg/kg, intraperitoneal). We established the EFX pharmacological profile on heteropentameric GABAARs constructed with α1 to α6 subunit expressed in Xenopus oocyte. Unlike what is known for benzodiazepines, neither the γ nor δ subunits influenced EFX-mediated potentiation of GABA-evoked currents. EFX acted first as a partial agonist on α2ß3γ2S, α3ß3γ2S, α6ß3γ2S and α6ß3δ GABAARs, but not on α1ß3γ2S, α4ß3γ2S, α4ß3δ nor α5ß3γ2S GABAARs. Moreover, EFX exhibited much higher positive allosteric modulation towards α2ß3γ2S, α3ß3γ2S and α6ß3γ2S than for α1ß3γ2S, α4ß3γ2S and α5ß3γ2S GABAARs. At 20 µM, corresponding to brain concentration at anxiolytic doses, EFX increased GABA potency to the highest extent for α3ß3γ2S GABAARs. We built a docking model of EFX on α3ß3γ2S GABAARs, which is consistent with a binding site located between α and ß subunits in the extracellular domain. In conclusion, EFX preferentially potentiates α2ß3γ2S and α3ß3γ2S GABAARs, which might support its advantageous anxiolytic/sedative balance.


Assuntos
Ansiolíticos/farmacologia , Oxazinas/farmacologia , Subunidades Proteicas/metabolismo , Receptores de GABA-A/metabolismo , Animais , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Feminino , Locomoção/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Moleculares , Oócitos/fisiologia , Oxazinas/uso terapêutico , Subunidades Proteicas/genética , Desempenho Psicomotor/efeitos dos fármacos , Receptores de GABA-A/genética , Xenopus laevis
16.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30396997

RESUMO

NMDA receptors (NMDARs) are glutamate-gated ion channels that are key mediators of excitatory neurotransmission and synaptic plasticity throughout the central nervous system. They form massive heterotetrameric complexes endowed with unique allosteric capacity provided by eight extracellular clamshell-like domains arranged as two superimposed layers. Despite an increasing number of full-length NMDAR structures, how these domains cooperate in an intact receptor to control its activity remains poorly understood. Here, combining single-molecule and macroscopic electrophysiological recordings, cysteine biochemistry, and in silico analysis, we identify a rolling motion at a yet unexplored interface between the two constitute dimers in the agonist-binding domain (ABD) layer as a key structural determinant in NMDAR activation and allosteric modulation. This rotation acts as a gating switch that tunes channel opening depending on the conformation of the membrane-distal N-terminal domain (NTD) layer. Remarkably, receptors locked in a rolled state display "super-activity" and resistance to NTD-mediated allosteric modulators. Our work unveils how NMDAR domains move in a concerted manner to transduce long-range conformational changes between layers and command receptor channel activity.


Assuntos
Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Regulação Alostérica , Animais , Simulação por Computador , Cisteína/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais , Imagem Individual de Molécula , Xenopus laevis
18.
Sci Rep ; 7(1): 10217, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860650

RESUMO

Mitofusins are large transmembrane GTPases of the dynamin-related protein family, and are required for the tethering and fusion of mitochondrial outer membranes. Their full-length structures remain unknown, which is a limiting factor in the study of outer membrane fusion. We investigated the structure and dynamics of the yeast mitofusin Fzo1 through a hybrid computational and experimental approach, combining molecular modelling and all-atom molecular dynamics simulations in a lipid bilayer with site-directed mutagenesis and in vivo functional assays. The predicted architecture of Fzo1 improves upon the current domain annotation, with a precise description of the helical spans linked by flexible hinges, which are likely of functional significance. In vivo site-directed mutagenesis validates salient aspects of this model, notably, the long-distance contacts and residues participating in hinges. GDP is predicted to interact with Fzo1 through the G1 and G4 motifs of the GTPase domain. The model reveals structural determinants critical for protein function, including regions that may be involved in GTPase domain-dependent rearrangements.


Assuntos
Membrana Celular/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Mutagênese Sítio-Dirigida , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Biologia Computacional , GTP Fosfo-Hidrolases/genética , Guanosina Difosfato/metabolismo , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
Biophys J ; 113(2): 302-312, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28648754

RESUMO

Inspired by the recent success of scientific-discovery games for predicting protein tertiary and RNA secondary structures, we have developed an open software for coarse-grained RNA folding simulations, guided by human intuition. To determine the extent to which interactive simulations can accurately predict 3D RNA structures of increasing complexity and lengths (four RNAs with 22-47 nucleotides), an interactive experiment was conducted with 141 participants who had very little knowledge of nucleic acids systems and computer simulations, and had received only a brief description of the important forces stabilizing RNA structures. Their structures and full trajectories have been analyzed statistically and compared to standard replica exchange molecular dynamics simulations. Our analyses show that participants gain easily chemical intelligence to fold simple and nontrivial topologies, with little computer time, and this result opens the door for the use of human-guided simulations to RNA folding. Our experiment shows that interactive simulations have better chances of success when the user widely explores the conformational space. Interestingly, providing on-the-fly feedback of the root mean square deviation with respect to the experimental structure did not improve the quality of the proposed models.


Assuntos
Simulação por Computador , Dobramento de RNA , RNA , Acesso à Informação , Retroalimentação Psicológica , Humanos , Internet , Modelos Genéticos , Modelos Moleculares , RNA/química , Software , Solventes/química
20.
J Hematol Oncol ; 10(1): 47, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28196522

RESUMO

Many recent publications highlight the large role of the pivotal eukaryotic nuclear export protein exportin-1 (XPO1) in the oncogenesis of several malignancies, and there is emerging evidence that XPO1 inhibition is a key target against cancer. The clinical validation of the pharmacological inhibition of XPO1 was recently achieved with the development of the selective inhibitor of nuclear export compounds, displaying an interesting anti-tumor activity in patients with massive pre-treated hematological malignancies. Recent reports have shown molecular alterations in the gene encoding XPO1 and showed a mutation hotspot (E571K) in the following two hematological malignancies with similar phenotypes and natural histories: primary mediastinal diffuse large B cell lymphoma and classical Hodgkin's lymphoma. Emerging evidence suggests that the mutant XPO1 E571K plays a role in carcinogenesis, and this variant is quantifiable in tumor and plasma cell-free DNA of patients using highly sensitive molecular biology techniques, such as digital PCR and next-generation sequencing. Therefore, it was proposed that the XPO1 E571K variant may serve as a minimal residual disease tool in this setting. To clarify and summarize the recent findings on the role of XPO1 in B cell hematological malignancies, we conducted a literature search to present the major publications establishing the landscape of XPO1 molecular alterations, their impact on the XPO1 protein, their interest as biomarkers, and investigations into the development of new XPO1-targeted therapies in B cell hematological malignancies.


Assuntos
Neoplasias Hematológicas/patologia , Carioferinas/efeitos dos fármacos , Terapia de Alvo Molecular , Mutação , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Linfócitos B/patologia , Carcinogênese , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Doença de Hodgkin , Humanos , Carioferinas/genética , Linfoma Difuso de Grandes Células B , Receptores Citoplasmáticos e Nucleares/genética , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA