Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(21): e2300075, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37097067

RESUMO

Chitin is a popular hemostatic material, but there are still many deficiencies in its ability to effectively stop bleeding, prevent infection, and fit wounds. Herein, AgNP@zeolite/chitin/bamboo (AgZ-CB) composite sponges with shape recovery are prepared to minimize blood loss, kill bacteria, and promote wound healing. Notably, the bamboo powder is used for the first time to remarkably enhance the softness of the composite sponge (volumetric expansion ratio >5). The fabricated AgZ-CB sponge exhibits an excellent killing effect (≈100% bactericidal rate) against both Escherichia coli and Staphylococcus aureus and activates internal and external coagulation pathways to accelerate hemostasis without causing thermal damage (≈5 °C temperature difference). Moreover, the AgZ-CB sponge shows less blood loss (26 mg) and a shorter time to hemostasis (42 s) than the commercial polyvinyl formal sponge (84 mg and 76 s) in the full-thickness liver injury model. The in vivo wound healing and biodegradation experiment indicate that AgZ-CB with excellent biocompatibility can close wounds efficiently. Overall, the AgZ-CB sponge has great potential in combating a series of obstacles in wound healing.


Assuntos
Queimaduras , Hemostáticos , Zeolitas , Humanos , Hemostáticos/farmacologia , Zeolitas/farmacologia , Quitina/farmacologia , Temperatura Alta , Hemostasia , Cicatrização , Hemorragia/tratamento farmacológico , Hemorragia/prevenção & controle , Queimaduras/tratamento farmacológico , Antibacterianos/farmacologia
2.
Eur J Histochem ; 65(3)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34494412

RESUMO

Rotator cuff tear (RCT) is a common tendon injury, but the mechanisms of tendon healing remain incompletely understood. Elucidating the molecular mechanisms of tenogenic differentiation is essential to develop novel therapeutic strategies in clinical treatment of RCT. The long noncoding RNA H19 plays a regulatory role in tenogenic differentiation and tendon healing, but its detailed mechanism of action remains unknown. To elucidate the role of H19 in tenogenic differentiation and tendon healing, tendon-derived stem cells were harvested from the Achilles tendons of Sprague Dawley rats and a rat model of cuff tear was established for the exploration of the function of H19 in promoting tenogenic differentiation. The results showed that H19 overexpression promoted, while H19 silencing suppressed, tenogenic differentiation of tendon-derived stem cells (TDSCs). Furthermore, bioinformatic analyses and a luciferase reporter gene assay showed that H19 directly targeted and inhibited miR-140-5p to promote tenogenic differentiation. Further, inhibiting miR-140-5p directly increased VEGFA expression, revealing a novel regulatory axis between H19, miR-140-5p, and VEGFA in modulating tenogenic differentiation. In rats with RTC, implantation of H19-overexpressing TDSCs at the lesion promoted tendon healing and functional recovery. In general, the data suggest that H19 promotes tenogenic differentiation and tendon-bone healing by targeting miR-140-5p and increasing VEGFA levels. Modulation of the H19/miR-140-5p/VEGFA axis in TDSCs is a new potential strategy for clinical treatment of tendon injury.


Assuntos
Diferenciação Celular/fisiologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais/fisiologia , Tendões/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Ratos Sprague-Dawley , Lesões do Manguito Rotador/metabolismo , Células-Tronco/fisiologia , Tendões/citologia
3.
ACS Omega ; 5(26): 15911-15921, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32656411

RESUMO

Glucose metabolism is an essential process for energy production and cell survival for both normal and abnormal cellular metabolism. Several glucose transporter/solute carrier 2A (GLUT/SLC2A) superfamily members, including glucose transporter 1 (GLUT1), have been shown to mediate the cellular uptake of glucose in diverse cell types. GLUT1-mediated glucose uptake is a transient and rapid process; thus, the real-time monitoring of GLUT1 trafficking is pivotal for a better understanding of GLUT1 expression and GLUT1-dependent glucose uptake. In the present study, we established a rapid and effective method to visualize the trafficking of GLUT1 between the plasma membrane (PM) and endolysosomal system in live cells using an mCherry-EGFP-GLUT1 tandem fluorescence tracing system. We found that GLUT1 localized at the PM exhibited both red (mCherry) and green (EGFP) fluorescence (yellow when overlapping). However, a significant increase in red punctate fluorescence (mCherry is resistant to acidic pH), but not green fluorescence (EGFP is quenched by acidic pH), was observed upon glucose deprivation, indicating that the mCherry-EGFP-GLUT1 functional protein was trafficked to the acidic endolysosomal system. Besides, we were able to calculate the relative ratio of mCherry to EGFP by quantification of the translocation coefficient, which can be used as a readout for GLUT1 internalization and subsequent lysosomal degradation. Two mutants, mCherry-EGFP-GLUT1-S226D and mCherry-EGFP-GLUT1-ΔC4, were also constructed, which indirectly confirmed the specificity of mCherry-EGFP-GLUT1 for monitoring GLUT1 trafficking. By using a series of endosomal (Rab5, Rab7, and Rab11) and lysosomal markers, we were able to define a model of GLUT1 trafficking in live cells in which upon glucose deprivation, GLUT1 dissociates from the PM and experiences a pH gradient from 6.8-6.1 in the early endosomes to 6.0-4.8 in the late endosomes and finally pH 4.5 in lysosomes, which is appropriate for degradation. In addition, our proof-of-concept study indicated that the pmCherry-EGFP-GLUT1 tracing system can accurately reflect endogenous changes in GLUT1 in response to treatment with the small molecule, andrographolide. Since targeting GLUT1 expression and GLUT1-dependent glucose metabolism is a promising therapeutic strategy for diverse types of cancers and certain other glucose addiction diseases, our study herein indicates that pmCherry-EGFP-GLUT1 can be utilized as a biosensor for GLUT1-dependent functional studies and potential small molecule screening.

4.
Cancer Manag Res ; 12: 4429-4439, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606937

RESUMO

BACKGROUND: Chondrosarcoma is the second-most common type of bone tumor and has inherent resistance to conventional chemotherapy. Present study aimed to explore the therapeutic effect and specific mechanism(s) of combination BET family protein and HDAC inhibition in chondrosarcoma. METHODS: Two chondrosarcoma cells were treated with BET family protein inhibitor (JQ1) and histone deacetylase inhibitors (HDACIs) (vorinostat/SAHA or panobinostat/PANO) separately or in combination; then, the cell viability was determined by Cell Counting Kit-8 (CCK-8) assay, and the combination index (CI) was calculated by the Chou method; cell proliferation was evaluated by 5-ethynyl-2'-deoxyuridine (EdU) incorporation and colony formation assay; cell apoptosis and reactive oxygen species (ROS) level were determined by flow cytometry; protein expressions of caspase-3, Bcl-XL, Bcl-2, γ-H2AX, and RAD51 were examined by Immunoblotting; DNA damage was determined by comet assay; RAD51 and γ-H2AX foci were observed by immunofluorescence. RESULTS: Combined treatment with JQ1 and SAHA or PANO synergistically suppressed the growth and colony formation ability of the chondrosarcoma cells. Combined BET and HDAC inhibition also significantly elevated the ROS level, followed by the activation of cleaved-caspase-3, and the downregulation of Bcl-2 and Bcl-XL. Mechanistically, combination treatment with JQ1 and SAHA caused numerous DNA double-strand breaks (DSBs), as evidenced by the comet assay. The increase in γ-H2AX expression and foci formation also consistently indicated the accumulation of DNA damage upon cotreatment with JQ1 and SAHA. Furthermore, RAD51, a key protein of homologous recombination (HR) DNA repair, was found to be profoundly suppressed. In contrast, ectopic expression of RAD51 partially rescued SW 1353 cell apoptosis by inhibiting the expression of cleaved-caspase-3. CONCLUSION: Taken together, our results disclose that BET and HDAC inhibition synergistically inhibit cell growth and induce cell apoptosis through a mechanism that involves the suppression of RAD51-related HR DNA repair in chondrosarcoma cells.

5.
Aging (Albany NY) ; 12(3): 2507-2529, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32023548

RESUMO

Osteosarcoma (OS) is the most common bone malignancy in adolescents and has poor clinical outcomes. Protein arginine methyltransferase 5 (PRMT5) has recently been shown to be aberrantly expressed in various cancers, yet its role in OS remains elusive. Here, we found that PRMT5 was overexpressed in OS and its overexpression predicted poor clinical outcomes. PRMT5 knockdown significantly triggered pronounced senescence in OS cells, as evidenced by the increase in senescence-associated ß-galactosidase (SA-ß-gal)-stained cells, induction of p21 expression, and upregulation of senescence-associated secretory phenotype (SASP) gene expression. In addition, we found that PRMT5 plays a key role in regulating DNA damaging agents-induced OS cell senescence, possibly, via affecting the repair of DNA damage. Furthermore, we found that TXNIP acts as a key factor mediating PRMT5 depletion-induced DNA damage and cellular senescence. Mechanistically, TRIM21, which interacts with PRMT5, was essential for the regulation of TXNIP/p21 expression. In summary, we propose a model in which PRMT5, by interaction with TRIM21, plays a key role in regulating the TXNIP/p21 axis during senescence in OS cells. The present findings suggest that PRMT5 overexpression in OS cells might confer resistance to chemotherapy and that targeting the PRMT5/TRIM21/TXNIP signaling may enhance the therapeutic efficacy in OS.


Assuntos
Neoplasias Ósseas/patologia , Senescência Celular/fisiologia , Osteossarcoma/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Ribonucleoproteínas/metabolismo , Adolescente , Adulto , Proteínas de Transporte/metabolismo , Criança , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Humanos , Masculino , Transdução de Sinais/fisiologia
6.
J Cell Biochem ; 118(12): 4575-4586, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28485543

RESUMO

Chondrosarcoma is the second most malignant bone tumor with poor prognosis and limited treatment options. Thus, development of more effective treatments has become urgent. Recently, natural compounds derived from medicinal plants have emerged as promising therapeutic options via targeting multiple key cellular molecules. Andrographolide (Andro) is such a compound, which has previously been shown to induce cell cycle arrest and apoptosis in several human cancers. However, the molecular mechanism through which Andro exerts its anti-cancer effect on chondrosarcoma remains to be elucidated. In the present study, we showed that Andro-induced G2/M cell cycle arrest of chondrosarcoma by fine-tuning the expressions of several cell cycle regulators such as p21, p27, and Cyclins, and that prolonged treatment of cells with Andro caused pronounced cell apoptosis. Remarkably, we found that SOX9 was highly expressed in poor-differentiated chondrosarcoma, and that knockdown of SOX9 suppressed chondrosarcoma cell growth. Further, our results showed that Andro dose-dependently down-regulated SOX9 expression in chondrosarcoma cells. Concomitantly, an inhibition of T cell factor 1 (TCF-1) mRNA expression and an enhancement of TCF-1 protein degradation by Andro were observed. In contrast, the expression and subcellular localization of ß-catenin were not altered upon the treatment of Andro, suggesting that ß-catenin might not function as the primary target of Andro. Additionally, we provided evidence that there was a mutual regulation between TCF-1 and SOX9 in chondrosarcoma cells. In conclusion, these results highlight the potential therapeutic effects of Andro in treatment of chondrosarcoma via targeting the TCF-1/SOX9 axis. J. Cell. Biochem. 118: 4575-4586, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Condrossarcoma/tratamento farmacológico , Diterpenos/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fator 1 de Transcrição de Linfócitos T/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Condrossarcoma/genética , Condrossarcoma/metabolismo , Condrossarcoma/patologia , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas de Neoplasias/genética , Fatores de Transcrição SOX9/genética , Fator 1 de Transcrição de Linfócitos T/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...