Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Mol Model ; 30(6): 176, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773049

RESUMO

CONTEXT: In the present work, the influence of aromatic ring substitution on a series of small-donor organic molecules (A, B, C, D, and E) with isoxazole cores was investigated for photovoltaic applications in organic solar cells. Frontier molecular orbital analysis, chemical reactivity descriptors, dipole moment, and population analysis showed that all the organic materials have intramolecular charge transfer abilities capable of donating electrons to the acceptor material (PCBM). The required photovoltaic parameters such as Voc, FF, Jsc, LHE, and other associated optoelectronic parameters are reported. The results demonstrate that aromatic ring substitution influences charge transfer and power conversion efficiencies of solar cells. That is, an increase in the aromatic character of a material increases its charge transfer, and as a result, its photovoltaic properties are increased. Additionally, all the investigated derivatives are good charge transporters with suitable electron reorganization energies, which are beneficial for minimizing energy loss. Hence, these organic derivatives with isoxazole backbones are promising materials and may provide fresh insights into the design of new materials for organic solar cell applications. METHOD: All calculations were performed using DFT and the ORCA 4.1.0 program package as the main tool for geometry optimization and frequency calculations. The Avogadro 1.2.1 visualization tool was used to prepare all input files executed by ORCA 4.1.0. The BP86, B3LYP, and wB97M series of functionals coupled with the def2/TZVP basis set were employed for geometry optimization. All energy-related calculations were carried out using the M06-2x functional. Multiwfn version 3.7 was used for aromaticity and population analysis. Excited state and UV-visible spectra were simulated using the TD-DFT method at the CAM-B3LYP-D3, wB97X-D3, and PBE0-D3 coupled with the ma-def2-TZVP basis set. Moreover, solvent effects were incorporated using the SMD scheme as incorporated in the ORCA software. Lastly, the RIJCOSX approximations were used to speed up calculations while maintaining accuracy.

2.
R Soc Open Sci ; 10(10): 230302, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37859840

RESUMO

Herein, the response surface methodology (RSM) has been used to study simultaneously the effects of carbonization temperature, residence time and moisture content on the activated hydrochar preparation-based vegetable-tanned leather shavings (VTS) using hydrothermal carbonization method (HTC). Owing to the desirability chosen, three responses were analysed, namely: the hydrochar yield, iodine and methylene blue numbers. The analysis of experimental results revealed that the hydrochar yield was decreased with increase in carbonization temperature which led to micropores formation inside the hydrochar network. The optimal preparation conditions retained were: 83.10%, 390.44 mg g-1 and 259.63 mg g-1 for the hydrochar yield, iodine and methylene blue number respectively. The hydrochar micrograph showed the presence of external pores, whereas the FTIR analysis recorded the presence of acidic functional groups found on hydrochar surface. The findings revealed that the VTS is a good precursor for the hydrochar preparation useful in the removal of organic and inorganic pollutants in aqueous media.

3.
Nanoscale Adv ; 5(21): 5880-5891, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37881702

RESUMO

In this paper, the DFT/M05-2X-D3/6-31+G(d,p) theoretical chemistry method is used to probe the adsorption ability of pure and boron doped C24 toward the temozolomide (TMZ) anticancer drug. The study is conducted in both gas and aqueous phases. The positive values of the Gibbs free energy of formation (12.03, 9.14 and 2.51 kcal mol-1) show that the adsorption of TMZ on C24 is not allowed. However, the boron-doped C24 (BC23) forms a very stable molecular complex with TMZ in the gas phase, characterized by the adsorption energy and Gibbs free energy values of -32.07 and -21.27 kcal mol-1 respectively. Analysis of Hirshfeld's atomic charge revealed the transfer of 0.6395e from TMZ to BC23, which is confirmed by the value of the dipole moment of the complex (13.42 D in the gas phase) as well as its molecular electrostatic potential map. The change in the frontier molecular orbital energy difference of BC23 is found to be 21.67% proving the good sensitivity of the cage toward the drug. The TMZ-BC23 molecular complex is very stable in water though the sensitivity of the cage is hugely reduced in that solvent. The reliability of these results was confirmed by checking the outcomes at both wB97XD/6-31+G(d,p) and B3LYP-D3/6-31+G(d,p) levels. This work shows that pristine BC23 is a better adsorbent of TMZ than some reported nanomaterials from the theoretical chemistry point of view.

4.
J Biomol Struct Dyn ; 41(19): 9721-9731, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36379673

RESUMO

DeThe adsorption of 2-aminopyridine (2-AP) and 3-aminopyridine (3-AP) on the external surface of B12N12 and Al12N12 fullerene-like nanocages (FLNs) is probed herein via DFT/M06-2X/6-311G(d,p) level of theory. It came out from the study that all FLN@X-AP states investigated are spontaneously formed. Moreover, topological analysis demonstrated that the boron nitride FLN can strongly adsorbed the APs through B-N covalent interactions. A significant change in the HOMO-LUMO band gap of B12N12, with values of 22.01 and 32.71% have been obtained following the adsorption of 2-AP and 3-AP respectively. Accordingly, the conductivity of B12N12 is greatly enhanced by the adsorption of the APs. The above mentioned observations, combined with those found from the analysis of dipole moments and molecular electrostatic potential maps predict B12N12 to be more sensitive to the aminopyridines investigated than the Al12N12 FLN from the theoretical point of view.Communicated by Ramaswamy H. Sarma.


Assuntos
Fulerenos , Teoria da Densidade Funcional , Aminopiridinas
5.
R Soc Open Sci ; 9(4): 211650, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35401995

RESUMO

The sensitivity of pure and doped X12N12 (X = B and Al) fullerene-like nano-cages (FLNs) toward the anti-cancer drug temozolomide (TMZ) is probed herein at DFT/M06-2X-D3/6-311G(d,p) theoretical level in both gas phase and water. A noticeable affinity of the FLNs toward TMZ was observed along with the negative gas-phase adsorption energies -1.37 and -2.09 eV for the most stable configurations of pure B12N12 and Al12N12 pristines, respectively. Considerable charge transfer from TMZ to the FLNs was also revealed via NBO analysis and the Hirshfeld atomic charges, making the dipole moment vector of the molecular complexes to be oriented from the nano-cages to the TMZ moiety. Furthermore, a percentage decrease in the HOMO-LUMO energy gap (ΔE g) of 38.09 and 17.72% was obtained for the B12N12 and Al12N12 nano-cages, respectively. The percentage change in ΔE g was found to be reduced upon doping and solvation of the FLNs. Finally, a recovery time in vacuum ultraviolet light of 1.06 s is found for the complex with pure B12N12, which in addition to the above-mentioned parameters make this boron nitride cage the best sensor for TMZ, among the FLNs considered in the present work.

6.
J Mol Model ; 26(9): 246, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32827077

RESUMO

This paper is focused on the examination of the bonding properties of a series of [M(NHC)2X2] (M = nd8 transition metal; X = Cl, Br and I) complexes in normal, abnormal and mixed C∩C coordination modes. Structures have been optimised in gas phase using B3LYP, M06 and P3BW91 functionals. Two basis sets have been used: the LanL2DZ and a mixed basis set (LanL2DZ for nd8 transition metals as well as halogen atoms and 6-311+G(d,p) for other atoms). Results obtained indicate that the B3PW91 bond distances are closer to experimental data. The complexation energies obtained for each binding mode increase in the order: Ni2+ < Pd2+ < Pt2+, independently of the halogen atom adopted. From the Quantum Theory of Atoms in Molecule (QTAIM) approach, the instability has been found to follow this trend: M - X < M - C. The analysis of metal-ligand interactions using the natural bond orbital (NBO) revealed that the strongest metal-ligand interactions are observed in the normal binding mode. The NCH → MX2 donation terms were found to be interestingly predominant compared with back donation ones in the complexes studied, except in Pt chloride ones. The contribution of electrostatic interaction energy between the above fragments (∆Eelstat term) is in the range 57.48-63.95% traducing the fact that the interactions are mostly electrostatic. Graphical abstract.

7.
Bioinorg Chem Appl ; 2016: 8636409, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27774044

RESUMO

The chelating ability of juglone and two of its derivatives towards Fe2+ion and the antioxidant activity (AOA) of the resulting chelates and complexes (in the presence of H2O and CH3OH as ligands) in gas phase is reported via bond dissociation enthalpy, ionization potential, proton dissociation enthalpy, proton affinity, and electron transfer enthalpy. The DFT/B3LYP level of theory associated with the 6-31+G(d,p) and 6-31G(d) Pople-style basis sets on the atoms of the ligands and the central Fe(II), respectively, was used. Negative chelation free energies obtained revealed that juglone derivatives possessing the O-H substituent (L2) have the greatest ability to chelate Fe2+ ion. Apart from 1B, thermodynamic descriptors of the AOA showed that the direct hydrogen atom transfer is the preferred mechanism of the studied molecules. NBO analysis showed that the Fe-ligand bonds are all formed through metal to ligand charge transfer. QTAIM studies revealed that among all the Fe-ligand bonds, the O1-Fe bond of 1A is purely covalent. The aforementioned results show that the ligands can be used to fight against Fe(II) toxicity, thus preserving human health, and fight against the deterioration of industrial products. In addition, most of the complexes studied have shown a better AOA than their corresponding ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...