Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34693907

RESUMO

Antigens (Ags) with multivalent and repetitive structure elicit IgG production in a T-cell-independent manner. However, the mechanisms by which such T-cell-independent type-2 (TI-2) Ags induce IgG responses remain obscure. Here, we report that B-cell receptor (BCR) engagement with a TI-2 Ag but not with a T-cell-dependent (TD) Ag was able to induce the transcription of Aicda encoding activation-induced cytidine deaminase (AID) and efficient class switching to IgG3 upon costimulation with IL-1 or IFN-α in mouse B cells. TI-2 Ags strongly induced the phosphorylation of protein kinase C (PKC)δ and PKCδ mediated the Aicda transcription through the induction of BATF, the key transcriptional regulator of Aicda. In PKCδ-deficient mice, production of IgG was intact against TD Ag but abrogated against typical TI-2 Ags as well as commensal bacteria, and experimental disruption of the gut epithelial barrier resulted in fatal bacteremia. Thus, our results have revealed novel molecular requirements for class switching in the TI-2 response and highlighted its importance in homeostatic commensal-specific IgG production.


When the human body faces a potentially harmful microorganism, the immune system responds by finding and destroying the pathogen. This involves the coordination of several different parts of the immune system. B cells are a type of white blood cell that is responsible for producing antibodies: large proteins that bind to specific targets such as pathogens. B cells often need help from other immune cells known as T cells to complete antibody production. However, T cells are not required for B cells to produce antibodies against some bacteria. For example, when certain pathogenic bacteria coated with a carbohydrate called a capsule ­ such as pneumococcus, which causes pneumonia, or salmonella ­ invade our body, B cells recognize a repetitive structure of the capsule using a B-cell antigen receptor. This recognition allows B cells to produce antibodies independently of T cells. It is unclear how B cells produce antibodies in this situation or what proteins are required for this activity. To understand this process, Fukao et al. used genetically modified mice and their B cells to study how they produce antibodies independently of T cells. They found that a protein called PKCδ is critical for B cells to produce antibodies, especially of an executive type called IgG, in the T-cell-independent response. PKCδ became active when B cells were stimulated with the repetitive antigen present on the surface of bacteria like salmonella or pneumococcus. Mice that lack PKCδ were unable to produce IgG independently of T cells, leading to fatal infections when bacteria reached the tissues and blood. Understanding the mechanism behind the T cell-independent B cell response could lead to more effective antibody production, potentially paving the way for new vaccines to prevent fatal diseases caused by pathogenic bacteria.


Assuntos
Antígenos/imunologia , Imunoglobulina G/imunologia , Microbiota/fisiologia , Proteína Quinase C-delta/genética , Simbiose , Células Th2/imunologia , Animais , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Feminino , Masculino , Camundongos , Proteína Quinase C-delta/metabolismo
2.
Adv Mater ; 28(46): 10182-10187, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27690372

RESUMO

Thermoelectric performance in the layered Zintl phase n-type Mg3+δ (Sb,Bi)2 is reported. Insertion of the excess Mg into the compounds is crucial for realizing n-type carrier transport with multivalley and isotropic character. An excellent ZT of 1.51 ± 0.06 at 716 K is achieved in the sintered polycrystals at the composition of Mg3.2 Sb1.5 Bi0.49 Te0.01 .

3.
Sci Rep ; 4: 6089, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25124989

RESUMO

Breaking the trade-off between thermoelectric (TE) parameters has long been demanded in order to highly enhance its performance. Here, we report the 'trade-off-free' interdependence between thermal conductivity (κ) and resistivity (ρ) in a TE/metal tilted multilayer and significant enhancement of TE power generation based on the off-diagonal thermoelectric (ODTE) effect, which generates transverse electrical current in response to vertical thermal current. ρ and κ can be simultaneously decreased by setting charge flow along more-electrically conductive layer and thermal flow across less-thermally conductive perpendicular direction by decreasing the tilting angle. Moreover, introducing porosity in the metal layer enables to decrease in κ without changing ρ, because the macroscopic ρ and κ of the tilted multilayer is respectively governed by the properties of the TE material and the metal with large dissimilarity. The obtained results reveal new strategies for developing trade-off-free TE materials, which will stimulate practical use of TE conversion for waste-heat recovery.

4.
Sci Rep ; 3: 1501, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23511347

RESUMO

Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi(0.5)Sb(1.5)Te3/Ni provides a promising solution. The Bi(0.5)Sb(1.5)Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0 kW/m(2)K and a volume power density of 10 kW/m(3) using low-grade heat sources below 100°C. The Bi(0.5)Sb(1.5)Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out.


Assuntos
Fontes de Energia Elétrica , Eletricidade , Temperatura Alta , Metais/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA