Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(4): 1726-1733, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133170

RESUMO

A rechargeable aluminum-ion battery based on chloroaluminate electrolytes has received intense attention due to the high abundance and chemical stability of aluminum. However, the fundamental intercalation processes and dynamics in these battery systems remain unresolved. Here, the energetics and dynamics of chloroaluminate ion intercalation in atomically thin single crystal graphite are investigated by fabricating mesoscopic devices for charge transport and operando optical microscopy. These mesoscopic measurements are compared to the high-performance rechargeable Al-based battery consisting of a few-layer graphene-multiwall carbon nanotube composite cathode. These composites exhibit a 60% capacity enhancement over pyrolytic graphite, while an ∼3-fold improvement in overall ion diffusivity is also obtained exhibiting ∼1% of those in atomically thin single crystals. Our results thus establish the distinction between intrinsic and ensemble electrochemical behavior in Al-based batteries and show that engineering ion transport in these devices can yet lead to vast improvements in battery performance.

2.
Phys Chem Chem Phys ; 23(19): 11515-11527, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33960334

RESUMO

Bimetallic Pd1Nix alloys supported on nitrogen-doped carbon (Pd1Nix/N-C, x = 0.37, 1.3 and 3.6) exhibit higher activities than Pd/N-C towards dehydrogenation of formic acid (HCO2H, FA). Density functional theory (DFT) calculations provided electronic and atomic structures, energetics and reaction pathways on Pd(111) and Pd1Nix(111) surfaces of different Pd/Ni compositions. A density of states (DOS) analysis disclosed the electronic interactions between Pd and Ni revealing novel active sites for FA dehydrogenation. Theoretical analysis of FA dehydrogenation on Pd1Nix(111) (x = 0.33, 1 and 3) shows that the Pd1Ni1(111) surface provides optimum H2-release efficiency via a favorable 'HCOO pathway', in which a hydrogen atom and one of the two oxygen atoms of FA interact directly with surface Ni atoms producing adsorbed CO2 and H2. The enhanced efficiency is also attributed to the blocking of an unfavorable 'COOH pathway' through which a C-O bond is broken and side products of CO and H2O are generated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...