Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 409(6): 1569-1580, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27909779

RESUMO

A key aspect for the further development of matrix-assisted laser desorption ionization (MALDI)-mass spectrometry (MS) is a better understanding of the working principles of MALDI matrices. To address this issue, a chemical compound library of 59 structurally related cinnamic acid derivatives was synthesized. Potential MALDI matrices were evaluated with sulfatides, a class of anionic lipids which are abundant in complex brain lipid mixtures. For each matrix relative mean S/N ratios of sulfatides were determined against 9-aminoacridine as a reference matrix using negative ion mass spectrometry with 355 and 337 nm laser systems. The comparison of matrix features with their corresponding relative mean S/N ratios for sulfatide detection identified correlations between matrix substitution patterns, their chemical functionality, and their MALDI-MS performance. Crystal structures of six selected matrices provided structural insight in hydrogen bond interactions in the solid state. Principal component analysis allowed the additional identification of correlation trends between structural and physical matrix properties like number of exchangeable protons at the head group, MW, logP, UV-Vis, and sulfatide detection sensitivity. Graphical abstract Design, synthesis and mass spectrometric evaluation of MALDI-MS matrix compound libraries allows the identification of matrix structure - MALDI-MS performance relationships using multivariate statistics as a tool.


Assuntos
Cinamatos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sulfoglicoesfingolipídeos/análise , Cristalografia por Raios X , Modelos Moleculares , Análise de Componente Principal
2.
Anal Chem ; 85(19): 9156-63, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23984824

RESUMO

Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) has become a method of choice in lipid analysis, as it provides localization information for defined lipids that is not readily accessible with nonmass spectrometric methods. Most current MALDI matrices have been found empirically. Nevertheless, preferential matrix properties for many analyte classes are poorly understood and may differ between lipid classes. We used rational matrix design and semiautomated screening for the discovery of new matrices suitable for MALDI-IMS of lipids. Utilizing Smartbeam- and nitrogen lasers for MALDI, we systematically compared doubly substituted α-cyanocinnamic acid derivatives (R(1)-CCA-R(2)) with respect to their ability to serve as negative ion matrix for various brain lipids. We identified 4-phenyl-α-cyanocinnamic acid amide (Ph-CCA-NH2) as a novel negative ion matrix that enables analysis and imaging of various lipid classes by MALDI-MS. We demonstrate that Ph-CCA-NH2 displays superior sensitivity and reproducibility compared to matrices commonly employed for lipids. A relatively small number of background peaks and good matrix suppression effect could make Ph-CCA-NH2 a widely applicable tool for lipid analysis.


Assuntos
Cinamatos/química , Lipídeos/análise , Animais , Encéfalo , Cinamatos/síntese química , Ratos , Ratos Sprague-Dawley , Software , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...