Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887939

RESUMO

In this study, we propose a novel approach for the silica coating of silver nanoparticles based on surface modification with adenosine monophosphate (AMP). Upon AMP stabilization, the nanoparticles can be transferred into 2-propanol, promoting the growth of silica on the particle surfaces through the standard Stöber process. The obtained silica shells are uniform and homogeneous, and the method allows a high degree of control over shell thickness while minimizing the presence of uncoated NPs or the negligible presence of core-free silica NPs. In addition, AMP-functionalized AgNPs could be also coated with a mesoporous silica shell using cetyltrimethylammonium chloride (CTAC) as a template. Interestingly, the thickness of the mesoporous silica coating could be tightly adjusted by either the silica precursor concentration or by varying the CTAC concentration while keeping the silica precursor concentration constant. Finally, the influence of the silica coating on the antimicrobial effect of AgNPs was studied on Gram-negative bacteria (R. gelatinosus and E. coli) and under different bacterial growth conditions, shedding light on their potential applications in different biological environments.

2.
Microb Biotechnol ; 13(5): 1515-1529, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32558268

RESUMO

Heavy metal contamination is a serious environmental problem. Understanding the toxicity mechanisms may allow to lower concentration of metals in the metal-based antimicrobial treatments of crops, and reduce metal content in soil and groundwater. Here, we investigate the interplay between metal efflux systems and the superoxide dismutase (SOD) in the purple bacterium Rubrivivax gelatinosus and other bacteria through analysis of the impact of metal accumulation. Exposure of the Cd2+ -efflux mutant ΔcadA to Cd2+ caused an increase in the amount and activity of the cytosolic Fe-Sod SodB, thereby suggesting a role of SodB in the protection against Cd2+ . In support of this conclusion, inactivation of sodB gene in the ΔcadA cells alleviated detoxification of superoxide and enhanced Cd2+ toxicity. Similar findings were described in the Cu+ -efflux mutant with Cu+ . Induction of the Mn-Sod or Fe-Sod in response to metals in other bacteria, including Escherichia coli, Pseudomonas aeruginosa, Pseudomonas putida, Vibrio cholera and Bacillus subtilis, was also shown. Both excess Cd2+ or Cu+ and superoxide can damage [4Fe-4S] clusters. The additive effect of metal and superoxide on the [4Fe-4S] could therefore explain the hypersensitive phenotype in mutants lacking SOD and the efflux ATPase. These findings underscore that ROS defence system becomes decisive for bacterial survival under metal excess.


Assuntos
Burkholderiales , Metais Pesados , Superóxido Dismutase/genética , Superóxidos
3.
Front Microbiol ; 11: 893, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582041

RESUMO

Cadmium, although not redox active is highly toxic. Yet, the underlying mechanisms driving toxicity are still to be characterized. In this study, we took advantage of the purple bacterium Rubrivivax gelatinosus strain with defective Cd2 +-efflux system to identify targets of this metal. Exposure of the ΔcadA strain to Cd2 + causes a decrease in the photosystem amount and in the activity of respiratory complexes. As in case of Cu+ toxicity, the data indicated that Cd2 + targets the porphyrin biosynthesis pathway at the level of HemN, a S-adenosylmethionine and CxxxCxxC coordinated [4Fe-4S] containing enzyme. Cd2 + exposure therefore results in a deficiency in heme and chlorophyll dependent proteins and metabolic pathways. Given the importance of porphyrin biosynthesis, HemN represents a key metal target to account for toxicity. In the environment, microorganisms are exposed to mixture of metals. Nevertheless, the biological effects of such mixtures, and the toxicity mechanisms remain poorly addressed. To highlight a potential cross-talk between Cd2 + and Cu+ -efflux systems, we show (i) that Cd2 + induces the expression of the Cd2 +-efflux pump CadA and the Cu+ detoxification system CopA and CopI; and (ii) that Cu+ ions improve tolerance towards Cd2 +, demonstrating thus that metal mixtures could also represent a selective advantage in the environment.

4.
mBio ; 9(6)2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459190

RESUMO

Silver (Ag+) and copper (Cu+) ions have been used for centuries in industry, as well as antimicrobial agents in agriculture and health care. Nowadays, Ag+ is also widely used in the field of nanotechnology. Yet, the underlying mechanisms driving toxicity of Ag+ ions in vivo are poorly characterized. It is well known that exposure to excess metal impairs the photosynthetic apparatus of plants and algae. Here, we show that the light-harvesting complex II (LH2) is the primary target of Ag+ and Cu+ exposure in the purple bacterium Rubrivivax gelatinosus Ag+ and Cu+ specifically inactivate the 800-nm absorbing bacteriochlorophyll a (B800), while Ni2+ or Cd2+ treatment had no effect. This was further supported by analyses of CuSO4- or AgNO3-treated membrane proteins. Indeed, this treatment induced changes in the LH2 absorption spectrum related to the disruption of the interaction of B800 molecules with the LH2 protein. This caused the release of B800 molecules and subsequently impacted the spectral properties of the carotenoids within the 850-nm absorbing LH2. Moreover, previous studies have suggested that Ag+ can affect the respiratory chain in mitochondria and bacteria. Our data demonstrated that exposure to Ag+, both in vivo and in vitro, caused a decrease of cytochrome c oxidase and succinate dehydrogenase activities. Ag+ inhibition of these respiratory complexes was also observed in Escherichia coli, but not in Bacillus subtilisIMPORTANCE The use of metal ions represents a serious threat to the environment and to all living organisms because of the acute toxicity of these ions. Nowadays, silver nanoparticles are one of the most widely used nanoparticles in various industrial and health applications. The antimicrobial effect of nanoparticles is in part related to the released Ag+ ions and their ability to interact with bacterial membranes. Here, we identify, both in vitro and in vivo, specific targets of Ag+ ions within the membrane of bacteria. This include complexes involved in photosynthesis, but also complexes involved in respiration.


Assuntos
Burkholderiales/efeitos dos fármacos , Cobre/farmacologia , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Membrana/metabolismo , Fotossíntese/efeitos dos fármacos , Prata/farmacologia , Bacterioclorofila A/antagonistas & inibidores , Burkholderiales/fisiologia , Carotenoides/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexos de Proteínas Captadores de Luz/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Succinato Desidrogenase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...