Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 851(Pt 1): 158096, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987216

RESUMO

Harmful algal blooms (HABs) are an issue of concern for water management worldwide. As such, effective monitoring strategies of HAB spatio-temporal variability in waterbodies are needed. Remote sensing has become an increasingly important tool for HAB detection and monitoring in large lakes. However, accurate HAB detection in small-medium waterbodies via satellite data remains a challenge. Current barriers include the waterbody size, the limited freely available high resolution satellite data, and the lack of field calibration data. To test the applicability of remote sensing for detecting HABs in small-medium waterbodies, three satellites (Planetscope, Sentinel-2 and Landsat-8) were used to understand how spatial resolution, the availability of spectral bands, and the waterbody size itself effect HAB detection skill. Different algorithms and a non-parametric method, Self-Organizing Map (SOM), were tested. Curvature Around Red and NIR minus Red had the best HAB detection skill of the 20 existing algorithms that were tested. Landsat 8 and Sentinel 2 were the best satellites for HAB detection in small to medium waterbodies. The most critical attribute for detecting HABs were the available satellite bands, which determine the detection algorithms that can be used. Importantly, algorithm performance was mostly unrelated to waterbody size. However, there remain some barriers in utilizing satellite data for HAB detection, including algae dynamics, macrophyte cover within the waterbody, weather effects, and the correction models for satellite data. Moreover, it is important to consider the match time between satellite overpass and sampling activities for calibration. Given these challenges, integrating regular sampling activities and remote sensing is recommended for monitoring and managing small-medium waterbodies.


Assuntos
Proliferação Nociva de Algas , Tecnologia de Sensoriamento Remoto , Lagos , Tecnologia de Sensoriamento Remoto/métodos
2.
J Environ Manage ; 201: 28-36, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28636970

RESUMO

During algal bloom periods, operation of seawater reverse osmosis (SWRO) pretreatment processes (e.g. ultrafiltration (UF)) has been hindered due to the high concentration of algal cells and algal organic matter (AOM). The present study evaluated for the first time the performance of titanium salts (i.e. titanium tetrachloride (TiCl4) and polytitanium tetrachloride (PTC)) for the removal of AOM in seawater and results were compared with the conventional FeCl3 coagulant. Previous studies already demonstrated that titanium salts not only provide a cost-effective alternative to conventional coagulants by producing a valuable by-product but also minimise the environmental impact of sludge production. Results from this study showed that both TiCl4 and PTC achieved better performance than FeCl3 in terms of turbidity, UV254 and dissolved organic carbon (DOC) removal at similar coagulant dose. Liquid chromatography - organic carbon detection (LC-OCD) was used to determine the removal of AOM compounds based on their molecular weight (MW). This investigation revealed that both humic substances and low MW organics were preferentially removed (i.e. up to 93% removal) while all three coagulants showed poorer performance for the removal of high MW biopolymers (i.e. less than 50% removal). The detailed characterization of flocs indicated that both titanium coagulants can grow faster, reach larger size and present a more compact structure, which is highly advantageous for the design of smaller and more compact mixing and sedimentation tanks. Both titanium coagulants also presented a higher ability to withstand shear force, which was related to the higher amount of DOC adsorbed with the aggregated flocs. Finally, TiCl4 had a better recovery after breakage suggesting that charge neutralization may be the dominant mechanism for this coagulant, while the lower recovery of both PTC and FeCl3 indicated that sweep flocculation is also a contributing mechanism for the coagulation of AOM.


Assuntos
Água do Mar , Titânio , Purificação da Água , Floculação , Microalgas , Sais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...